HATCHERY PRODUCED PACIFIC OYSTER SEED: economic feasibility on cultch in the Pacific Northwest

Kwang H. Im

R. Donald Langmo

OREGON STATE UNIVERSITY SEA GRANT COLLEGE PROGRAM Publication no. ORESU-T-77-010 PRICE $\$ 2.50$

AGRICULTURAL EXPERIMENT STATION Special Report 492

Whaturnatax
Sea Grant Depository G

HATCHERY
PRODUCED
PACIFIC
OYSTER SEED:
economic feasibility
on cultch in the
Pacific Northwest
Kwang HI Im
R. Donald Langmo

OREGOV STATE UNIVERSITY
SEA GFIANT COLLEGE PROGRAM
Publication no. ORESU-T-77-010
AGRICLLTURAL EXPERIMENT STATION
Special Report 492

authors

KWANG H. IM fomerly a Research Ass, with the Department of Ag. and Resource Economics at Oregon State Univeristy is now Princifal Economist with the Alaska State Department of Fish and Game.
R. DONALD LANGMO is Associate Professor and Industrial Engineer with the Department of Ag. and Resource Economics at Oregon State University.

acknowledgment

Practical contributions to this report were aided through information from cooperating segments of the oyster industry and suppliers of utilities, equipment, and contracting services. Especially valuable capabilities, expressed as technical knowledge, access to production facilities, and support of cost evaluation were added by Dr. Vance P. Liporsky, Manager of the Hatchery Division of the Coast Oyster Company, and by Professor Wilbur P. Breese of the Department of Fisheries and Wildife at the Marine Science Center, Oregon State University, Newport.

The Oregon State University Sea Gran: College Program is supported cooperatively by the National Oceanic and Atmospheric Administration, U.S. Department of Commerce, by the State of Oregon, and by participating local gwermments and private industry.

related publication

HATCHERY MANUAL FOR THE PACIFIC OYSTER, by Wilbur ?. Breese and Robert E. Malouf. Publication no. ORESU-H-75-002.

Explains the tools and techniques tested and adopted at the Oregon State University Pilot Oyster Hatchery. It is a "how-to" manual covering all phases of raising oyster seed-from selecting and zonditioning adult spawners, to feeding and raising larvae, to culturing algae for oyster food and preparing tanks for setting.

ordering publications

Copies of these and other Sea Grant publications are available from
Sea Grant Communications
Oregon State University
Corvallis, Oregon 97331
Please include author, title and publication number. Some publications carry a charge to help defray printing expenses. The charge, if any, appears after the publication number.
Please make checks payable to Oregon State University
Page
INTRODUCTION. 1
Review of U.S. Oyster Supply 1
Objectives 2
Source of Data 2
Limitations and Methods 4
OYSTER SEED HATCHERY STRUCTURES 7
Operating Stages 7
Conditioning. 7
Spawning. 7
Algal Food Production 9
Larval Rearing. 9
Larval Setting. 9
Cultch Preparation. 10
Variation in Production Practices 10
Size and Volume. 15
ESTIMATION OF COSTS 16
Initial Investment Costs 16
Land. 16
Building. 17
Equipment 17
Fixed Costs 20
Depreciation. 20
Interest On Investment. 21
Insurance and Taxes 21
Repair and Maintenance Charges 22
Supervision, Administration, and
Full-Time Labor 22
Travel Expenses 23
Variable Costs 23
Part-Time Labor 23
Utilities, Materials, and Supplies. 23
Electricity 23
Fresh Water. 27
Sewer and Garbage Disposal 27
Nutrients and Material 31
Fuel and Oil 33
Telephone. 33
Office Supplies 33
Variable Repairs and Maintenance 34
Others 35
Total Costs 36
Returns. 38
Page
ECONOMIES OF SIZE. 59
Short-Run and Long-Run Cosit Functions 59
SUMMARY AND CONCLUSTONS. 68
REFERENCES 73
GLOSSARY OF TERMS AS USED IN OY'STER CULTURE. 74
APPENDIX 76

ECONOMIC FEASIBILITY OF HATCHERY-PROIJUCED PACIFIC OYSTER (CRASSOSTREA GIGAS) SEED ON CULTCH IN THE PACIFIC NORTHWES ${ }^{\prime}$ '

INTRODUCTION

Oysters (all species combined), in terms of ex-vessel value, currently rank seventh largest among all seafood species landed in the United States, following shrimp, salmon, tuna, crab, lobster, and merihaden.

The supply of domestic hatchery seed for oyster propagation is not sufficient to meet the potential demand at current market prices. Oyster growers can not depend entirely on imported seed as a supplement to the natural seed, mainly because of high cost and uncertainty of sieed supply. In the past, most of the Pacific oyster (c. gigas) seed has been inported from Japan at high cost and, often, with an extremely low survival rate.

The purpose of this study is to investigate the fonomic feasibility of producing hatchery seed in the Pacific Northwest, accomodating economic, technical, and blological factors that affect the cost of oyster seed production. In addition, costs are developed for five different levels of output that are within current practical commercial capacities. Also, for each level of production, costs are established for five methods of cultch preparation. These cost projections may serve as a guide for the analysis of costs of present or proposed oyster seed hatchery operations in the Pacifjc Northwest.

Review of U.S. Oyster Supply

Oyster imports (mostly canned) have increased significantiy, while domestic landings have decreased substantially during the last two and one-half decades, due primarily to high domestic production cost, pollution of oyster beds, and foreign competition. National oyster production, in meat-weight pounds produced per capita, has been . 503, . 333, . 263, and . 200 in $1950,1960,1970$, and 1975, respectively, while oyster imports have been . 003, . 039, . 074, and . 058 pounds per capita, respectively, in those years.

The quantity of domestic landings has decreased by $23.7,30.4,31.8$, and 32.4 percent in $1960,1965,1970$, and 1975 , respectively, compared to landings averaged over the 5 years 1950-1954. Conversely, for the same periods, the quantity of oyster imports has increased tremendously, by $821,1,032,1,874$, and 1,532 percent, respectively. Nevertheless, in the same four comparative years the total supply of oysters for $\mathrm{U} . \mathrm{S}$. consumption has decreased from the $1950-54$ average by $15.6,20.3,13.6$, and 17.4 percent.

National oyster supply has not kept up with population growth. Table l showe the historical trend of U.S. population, oyster supply, and oyster consumption per capita for the last two and one-half decades. National oyster consumption, in terms of domestic landings plus imports, was . 51, . 37, . 34, and . 31 pounds per capita in 1950, 1960, 1970, and 1975, respectively.

Objectives

This study identifies several realistic levels of oyster seed output, and. determines capital requirements and profitability of each different output level. Specifically, the objectives are:

1. To estimate the variable and fixed costs;
2. to estimate the profit prospective of the hatchery;
3. to deternine the average costs per case of seed on cultch;
4. to compare the investment alternatives; and
5. to investigate short-run and long-run cost functions.

Source of Data

Data on labor input, equipment requirements, and technology were obtained through interviews with staff of leading commercial oyster seed hatcheries in the Pacific Northwest. Other sources of information were time and production studies, analysis of operating and accounting record data, and equipment inventories for the hatchery operation.

Construction cost estimates of the new hatchery building, including wiring and piping, were obtained through interviews with several contractors in Oregon and Washington. The present market values of proposed sizes of used buildings were obtained from industry.

Table 1. U.S. Oyster Supply and Consumption Per Capita

Year	Population (resident)	Landings	Imports	$\begin{aligned} & \text { Total }{ }^{\text {a/ }} \\ & \text { supply } \end{aligned}$	Consumption per capita
	million persons	---- mfllion pounds		-----	pounds
1950...	151.9	76.4	0.4	76.8	. 51
1951...	154.0	73.0	1.0	74.0	. 48
1952...	156.4	82.2	0.6	82.8	. 53
1953...	159.0	79.7	0.7	80.4	. 51
1954...	161.9	81.9	1.1	83.0	. 51
1955...	165.1	77.5	1.5	79.0	. 48
1956...	168.1	75.1	1.9	77.0	. 46
1957...	171.2	71.7	2.7	74.4	. 43
1958...	174.1	66.4	5.4	71.8	. 41
1959...	177.1	64.7	6.0	70.7	. 40
1960...	180.0	60.0	7.0	67.0	. 37
1962...	185.8	56.0	7.8	63.8	. 34
1963...	188.5	58.4	8.5	66.9	. 35
1964...	191.1	60.5	8.0	68.5	.36
1965...	193.5	54.7	8.6	63.3	.33
1966...	195.6	51.2	12.0	63.2	. 32
1967...	197.5	60.0	16.1	76.1	. 39
1968...	199.4	61.9	14.5	76.4	. 38
1969...	201.4	52.2	16.7	68.9	. 34
1970...	203.8	53.6	15.0	68.6	. 34
1971...	206.2	54.6	9.5	64.1	. 31
1972...	208.2	52.5	20.8	73.3	. 35
1973...	209.8	48.6	19.9	68.5	. 33
1974...	211.4	44.9	16.0	60.9	. 29
1975...	213.0	53.2	12.4	65.6	. 31

a/
Total supply is not adjusted for beginning anci ending stocks, exports, defense purchases, or shipments to U.S. Territories.

SOURCE: Compiled from Statistical Abstract of the U.S., and Fishery Statistics of the U.S., U.S. Department of Commerce, 1950-1975.

Further information on input-output relations, equipment costs, utility rates, and wage rates for 1976 were obtained from both industry and government sources.

Following a detailed study of the operating experience and cost estimates of the oyster hatchery, projections for various other output capacities were developed.

Limitations and Methods

There are two methods of oyster seed production in hatcheries: spat (postlarval oyster) on cultch, and free or cultchless spat. In the cultch method, dealt with in this study, the spat attach themselves on whole pieces of oyster shell. Costs are not developed for producing cultchless seed, a system that is not currently employed on a commercial scale in the Pacific Northwest.

Production techniques and labor policies differ by hatcheries. Some commercial hatcheries operate nine months per year, and lay off operators during the winter months. However, in this study it was assumed that a core of regular employees (one manager, one supervisor, two operators, and one half-time bookkeeper) work on a year-round basis. They produce 15 batches per year: one batch in February, one and one-half batches earh in March and April, two batches in each month from May through September, and only one batch during the winter period (October through January). During the winter months most labor is devoted to repairing and maintaining the facilities and equipment. Even though the business flow may not be sufficient at all times, pspecially during the winter months, to keep these operators working at capacity, i: is necessary to employ them fulltime in order to have these highly skilled operators available when they are needed. In this study, operator's wages are treated as part of a hatchery's fixed costs for the year.

Because of the variable production by seasons of the year, the cost analysis has been developed both month-by-month and on an annual basis in order to provide an idea of the gain or loss in each month, in addition to the annual average costs. In any event, either no production or low production in winter months will cause a loss of money because the fixed costs are unfform over all the months.

The basic model, referred to as Plant I in the cost analysis, was constructed to provide general information on building and ecuipment costs, labor inputs, and other costs incurred in producing oyster seed. Based on production costs for Plant I, which has a designed production capacity of 6,000 cases per year, costs for four other model plants, Plants II to V, were projected. Among the projected models, Plant II has an output capacity of 8,000 cases, Plant III 10,000 cases, Plant IV 12,000 cases, and Plant V 14,000 cases per year. Practices and technologies were assumed to be the sane for the five plants.

To describe the production techniques, physjcal flow patterns were developed from both research and commercial types of oyster hatchery operations.

Total costs were developed by an economic-ergineering approach, ${ }^{1 / /}$ and analyzed for both short- and long-run conditions. In this study, "short-run" refers to the situation in which the plant's building and equipment are assumed to be invariant with respect to output, while the long-run situation permits changes in bailding and equipment levels with different output rates.

To provide decision-making assistance to those operating or contemplating the operation of a hatchery, 400 cumulative cost figures, as shown in figure 1 , were developed by capacity of plant, type of building, method of culteh preparation, type of cost, and season. Values for costs and returns were selected from those prevalling during the study, and are subject to change with time. Costs of

1/The explanation of the economic-engineering approach wich is given by
Madden [7] is that:
In the economic-engineering or synthetic-firin approach, budgets are developed for hypothetical firms, using the best available estimates of the technical coefficients - resource requirements and expected yields - and charging market prices or opportunity costs for all resources. Hypothetical firms are developed in much the same way that an architect or engineer, bidding for a construction contract, designs a proposed factory or bridge, and estimates the performance and cost of the finished product.

Economic-engineering or synthetic-firm analysis is an appropriate technique when either of two research questions is asked: (1) What is the average cost per unit of output or profit that firms of various sizes could potentially achieve, using modern or advanced technologies, or (2) what are the differences in average cost per unit of output attributable strictly to differences in size of firm.

* Operating seasons are winter (W), late winter (LW), spring (SP), and sumer (S).
Figure 1. Schedule used for determining costs.
packaging, advertising, and transportation were not included in the average and total cost figures.

OYSTER SEED HATCHERY STRUCTURES

Operating Stages

Oyster seed production is dependent on 6 main stages of operation: (1) conditioning adult oysters for spawning; (2) spawning; (3) algal food production; (4) larval rearing; (5) larval setting; and (6) eultch preparation. Figure 2 relates these stages of an oyster hatchery system.

These six functions, though there may be some variation in how they are accomplished, are common to both research and commercial operations. The following description of hatchery operation stages ls based on operating procedures of the Oregon State University pllot oyster hatchery. (For further information, see [1, 6]).

Condit ioning

Adult oysters are stored by suspending them in trays attached to rafts in the bay. The temperature of the water is too low to promote spawning. When needed for spawning, oysters are brought to the hatchery and placed in trays through which unfiltered sea water at $19^{\circ} \mathrm{C}$ is circulated. Prior to spawning, the oysters feed on natural food in the sea water for 4 or 5 weeks.

Spawning

Conditioned adult oysters can be induced to spawn by placing them in spawning trays with running fresh sea water that has been filtered and sterilized by ultra-violet light. If necessary, sperm or eggs are added to the tray to stimulate spawning. Water temperature should be controllable to $30^{\circ} \mathrm{C}$.

Oysters are placed into individual containers to collect eggs and sperm when they start spawning. An adult female Pacific oyster may release as many as 50 million eggs per spawning. Females are usually allowed to spawn out, but males are placed in cold water to stop their spawning ijefore they spawn out, because only small volumes of sperm are required to fertilize a large number of eggs.

Algal Food Production

This stage, illustrated in some detail in Figure 3 , may be considered as a separate operation from the growing of larvae. However, the availability of an adequate food supply is crucial for larval survival and growth.

The time interval from the initiation of algae production to the availablifty of an adequate supply of algae for larval food requires from one to two weeks. Because of this production lag, a stock of algae is maintained at all times. The algae are started by inoculating the culture media in 250 ml flaskg, and then transferred to progresaively larger containers as the algae bloom.

Larval Rearing

Fertilized eggs from the spawning stage are placed in 500 t tanks which are filled with filtered sea water and maintained at a temperature of $27^{\circ} \mathrm{C}$ and aerated for 24 hours. If more than 80 percent of the larvae "shell up", the tanks are drained out through a 40μ screen. This retains the veligers and discards the abnormal larvae and infertile eggs. The tanks are rinsed thoroughly and filled with warm filtered sea water until $1 / 3$ full, at which time 2.5 milion larvae are added. Each tank is then filled with warm filtered sea water.

Enough algae are added to the tank every day to maintain the proper level of nutrients. Every week, in addition, 25 g of Sulmet are added to each 500 \& tank. At the end of each week tanks are drained through 80μ screen and ringed thorough1y. Larvae are sampled, counted, and measured with the aid of a dissecting scope every week.

On the 14 th day of rearing, a string of 3 scallop shells is placed in each tank and inspected every day until at least 50 spat are distributed among the 3 scallop shells.

Larval Setting

When the larvae attain setting size, they are transferred to a setting tank. Sulmet, algae, and 1 million larvae are added to each tank, filled with warm filtered sea water. Two cases of clean cultch are added to each tank, and the temperature $1 s$ maintained at $30^{\circ} \mathrm{C}$.

Algae are added twice a day until one week after setting. Larvae set on the cultch within 3 days. From then until the spat are at least 3 mm in diameter, a size at which they can be placed in the bay or holding pond, the spat can be fed 100,000 to 150,000 algae cells/mt each day.

Cultch Preparation

Cultch is the material (usually oyster shell) to which oyster larvae attach themselves and undergo metamorphosis to nonmotile "spat". This material, which is cleaned naturally in the ocean environment, must be cleaned by other means for use in a hatchery.

This stage is essentially a simple process that involves the cleaning of "dirty" oyster shells by tumbling them in a concrete mixer in which a continuous stream of water washes the shells. This stage, like algal food production, may be considered as a separate operation from growing the larvae.

Variation in Production Practices

Even though the six main stages are common to both research and commercial type operations, each commercial oyster hatchery has variations of practices Within stages. Water, for example, may be warmed by radiant heat, a heat exchanger, or by btoring in tanks in a room that has the proper ambient temperature. Circula= tion of water at certain stages may differ, with some plants employing recirculation while others use a continuous flow of fresh sea water. Emptying larval rearing tanks for cleaning ranges, by practice, from once every 2 days to once a week. Agitation of algae cultures may be accomplished by bubbling air from lines immersed in the containers or simply by hand-shaking them a couple of times each day.

Each hatchery has its own recipe or formula for algae production. Also, the duration of larval setting varies, by technique, between 2 hours and 3 days. Larval density for setting differs with hatcheries, and ranges from 2 cases to 10 cases of cultch per million larvae.

The relationships among hatchery operation procedures are presented in Figures 3 to 6. Techniques at Oregon State Univeraity's Marine Science Center

Figure 3. Simplified fiow procest chart of the prearnt method of producing algal lood the Ozegon Siate Unlversily, Marline Sclence Cenier,

Figure 4. Simpi'fie:' flow proceot chart of a typical conmercial method of producing algel food.

Figure 5. Slmpilfind flow procest thart of the poresent mothond of oysier berd production at the

Figure 6. Simplifled flow process chart of a typleal method of produrling oyster seed by a commerchal hatchery.
are represented by Figures 3 and 5, and methods at a typical commercial oyster hatchery are shown in Figures 4 and 6. A flow-process chart or diagram is a graphical description which shows a picture of the over-all production process being studied. Each step of the process is identified, as to type of activity, by the following symbols;

Sizes and Volume

The five model plant sizes had total output capacity (in cases of oyster seed) of: $6,000,8,000,10,000,12,000$, and 14,000 per year, or $400,534,666,800$, and 934 cases per each of 15 batches. These ase designated as Plants $I, I I, ~ I I I$, IV, and V, respectively. Table 2 shows the space requirements for building, by plant and by stages of operation, and reveals i:hat Plant I requires 5,770 square feet, while Plant V requires 8,955 square feet. Thus, a 133 percent increase in output capacity requires only a 55 percent :Lncreage in space. The main increase in space requirements is for larval realing and algal food production. Table 3 shows the estimated production of oyster seed by plant and by month.

Table 2. Space Requirements for Building

Stage	Plant			
	II	III	IV	v
	square feet			
Conditioning and spawning.... so	50	50	50	50
Algal food production........ 1,550	1,710	1,870	1,990	2,150
Larval rearing................ 1,940	2,677	3,227	3,778	4,425
Larval setting................ 1,620	1,620	1,620	1,620	1,620
Other ${ }^{\text {a/ }}$. ${ }^{610}$	610	610	710	710
TOTAL. 5, 770	6,667	7,377	8,148	8,955
a/ Includes spaces for office, 330; filters. 150; and storage, 100	troom, 200.	boil	and sa	

Table 3. Estimated Production of Oyster Seed, by Month

Month	Plant				
	I	II	III	IV	V
			cases ${ }^{\text {a/ }}$		-
January..................	100	134	166	200	234
February.................	400	534	666	800	934
March.	600	800	1,000	1,200	1,400
April..................	600	800	1,000	1,200	1,400
May.......................	800	1,066	1,334	1,600	1,866
June.......................	800	1,066	1,334	1,600	1,866
July.	800	1,066	1,334	1,600	1,866
August...................	800	1,066	1,334	1,600	1,866
September...............	800	1,066	1,334	1,600	1,866
October..................	100	134	166	200	234
November..................	100	134	166	200	234
December...............	100	134	166	200	234
TOTAL.	6,000	8,000	10,000	12,000	14,000

a/ One case is equivalent to $21 / 2$ bushels, and will contain approximately 1,000 to 1,500 pieces of oyster shell, broker and unbroken, with an average spat count of 20 spat per she 11.

Figure 7 shows more precisely what the menthly production pattern is. During the winter months production is extremely low, and during summer months it reaches its peak.

ESTIMATION OF COST'S

Initial Investment Costs

Initial investment costs consist mainly of land, building, and equipment.

Land

Cost of initial investment in land is highly variable in relation to location and site, and was omitted in this study. This is not a major item affectlng the cost of production.

Figure 7. Production cycle by plant.

Building

Inftial investment costs for the oyster hatchery building were estimated on the basis of space requirements needed for equipment and processing. The projected space requirements for various levels of output capacity are shown in Table 2.

Two types of buildings - new and used - were considered in this study. Initial investment costs for a new building, incliding piping and wiring, were estimated, at current prices, to be $\$ 25$ per square foot, and those of a used building were estimated to be $\$ 10$ per square foot. Table 4 shows these figures.

Table 4. Initial Investment Costs for Buildin;

Type of building	Plant				
	I	II	III	IV	V
			dollars	----1	-
New. . . .	144,250	166,675	184,425	203,700	223,875
Used.	57,700	66,670	73,770	81,480	89,550

Equipment

The number of equipment items, kind, size, and type required for each plant, are synthesized from input-output relationships and presented in Table 5. Initial investment costs for equipment vary with nethods (options) of cultch preparation. Five different methods of cultch preparation are analyzed in this study, and are designated by Option 1, Option 2, Option 3, Option 4, and Option 5, which are used throughout the report. The description of the options follows:

Option 1 - Pump salt water with city power.
Option 2 - Pump salt water with own generated power.
Option 3 - Use city water and power.
Option 4 - Use city water with own generated power.
Option 5 - Buy already-cleaned cultch from a local dealer.

Selection of the cultch preparation option will be influenced by conditions at the site of a specific hatchery.

[^0]The estimated initial investment costs for equipment, by option, are presented in Table 6. The costs for Option 5 are the lowest because, under this option, no equipment is needed for cultch preparation. Total initial investment costs for building and equipment are presented in Table 7.

Table 6. Initial Investment Costs for Equipment, by Option

Cultch preparation method	Plant				
	I	II	III	IV	V
		---	dollars	----	---
Option 1...........	51,622	57,948	62,806	67,755	73,595
Option 2............	55,622	61,948	66,806	71,755	77,595
Option 3...........	50,322	56,648	61,506	66,455	72,295
Option 4...........	54,322	60,648	65,506	70,455	76,295
Option 5............	40,322	46,648	51,506	56,455	62,295

The respective total initial investment costs for building and equipment varied from $\$ 98,022$ to $\$ 199,872$ for $\operatorname{Plant} I$, and fror $\$ 151,845$ to $\$ 301,470$ for Plant V. Initial investment costs for the building alone accounted for up to 51 to 78 percent of the total.

Fixed Costs

Fixed costs are not a function of the level of output, but are incurred regardless of output level. Costs considered in this study as being fixed include depreciation, interest on investment, insurance and taxes, repair and maintenance charges for building and equipment, and administration, supervision, and full-time labor costs. Travel expenses for the manager and other personnel are also considered to be fixed. The following procedures and values were used in estimating fixed costs.

Deprectation

Depreciation was calculated using the strafght-line method, assuming no

Table 7. Total Initial Investment Costs for Building and Equipment

Type of building	Cultch preparation method	Plant				
		I	II	III	IV	V
		------	--	dollars	-	
	Option 1.....	195,872	224,623	247,231	271,455	297,470
	Option 2.....	199,872	228,623	251, 231	275,455	301,470
New	Option 3.....	194,572	223,323	245,931	270,155	296,170
	Option 4.....	198,572	227,323	249,931	274,155	300,170
	Option 5.....	184,572	213,323	235,931	260,155	286,170
	Option 1.....	109,322	124,618	136,576	149,235	163,145
	Option 2.....	113,322	128,618	140,576	153,235	167,145
Used	Option 3.....	108,022	123,318	135,276	147,935	161,845
	Option 4.....	112,022	127,318	139,276	151,935	165,845
	Option 5.....	98,022	113,318	125,276	137.935	151,845

salvage value, on the basis of 10 years for equiprent, 30 years for new building, and 15 years for used building.

Interest on Investment

Interest on Investment was calculated at $1: 3$ percent of undepreciated balance on building and equipment, i.e., 6.6 percent on equipment, 6.2 percent on new building, and 6.4 percent on used building, according to the following formula:

$$
\text { Average interest }=\frac{1}{2}\left(\frac{n+1}{n}\right),
$$

where: $\quad 1$ - Interest rate, estimated as 12 percent, and $n=$ number of useful years.

Insurance and Taxes

Insurance and taxes equal to 1.0 and 1.6 percent, respectively, of the total initial investment costs.

Repair and Maintenance Charges

Regardless of whether equipment and buildings are being used, their maintenance and repair are necessary in order to retaln their productive ability. Three main factors - age, type of construction, and foundation - affect repair and maintenance charges for a building. The allocated proportion of repair and maintenance charges are 1.5 percent each of the total initial investment costs for the new building and equipment, and 3 percent for the used building.

Supervision, Administration, and Full-Time Labor

Four and one-half employees were considered to be sufficient for Plants I through V as fixed labor: 1 manager, 1 supervilsor, 2 operators, and one half-time bookkeeper. The estimated wages and salaries are as follows:

$$
\begin{array}{rrrr}
\text { Manager. } & \$ 14,210 \\
\text { Supervisor. } & 9,470 \\
\text { Two operators } & 17,595 \\
\text { Half-time bookkeeper } & 3,420 \\
\hline \text { TOTAL. } & \$ 44,695
\end{array}
$$

Wages for the operators were computed at $\$ 4$ per hour for 40 hours per week, and 52 weeks per year. One of the operators, assigned only to algae production, is assumed to work overtime for 4 hours per week during the whinter months and 8 hours per week the rest of the year. It is advantageous for management to pay overtime for the few extra hours of work needed for algae production rather than to obtain and train a part-time operator for the additional work. The estimated wages for two operators included this overtime work with a time and one-half rate.

Hourly wage rates and fringe benefits vary considerably with the state and Individual plant policy. Fringe benefits, in general, include allowance for Social Security Tax, unemployment insurance, health and accident insurance, workmen's compensation insurance, and other fringe costs to the employer. In addition to these, full-time employees normally receive 2 weeks' paid vacation and 8 to 10 paid holidays per year. In this study, 14 and 10 percent of wages and salaries were applied for fringe benefits, respectively, to the full-time employees and part-time workers. The total estimated wages and salaries, including fringe benefits, are $\$ 50,815$.

Travel Expenses

Business travel expense by the manager ard other employees was assumed to be $\$ 1,000$ per year.

Table 8 shows the annual fixed costs, by plant and option. Fixed costs varied from $\$ 80,000$ to $\$ 83,000$ for Plant 1 , ard from $\$ 95,000$ to $\$ 98,000$ for Plant V, associated with new buildings, and from $\$ 71,000$ to $\$ 74,000$ for Plant I and from $\$ 81,000$ to $\$ 85,000$ for Plant V, associated with used buildings.

Variable Costs

Variable costs used in this study include such items as wages of part-time labor, costs of utilities, materials, and supflies, and other expenses directly related to oyster seed production. All costs are analyzed on a monthly basis. Some items such as electrical demand charges, water and sewer charges, oil for boiler, garbage, and telephone, are semi-fixed on a monthly basis, regardless of output level.

Part-Time Labor

In addition to full-time laborers, part-time laborers are required for cultch preparation. With the designed model and technology, 4 part-time workers are required to clean 200 cases of oyster shell per day. The labor requirements vary, month by month, with plants and options chosen. Also, 2 additional part-time workers, working 4 days per week for 5 months (May through September), are necessary for Plants IV and V, to support full-time workers. Wage rates for these workers, including fringe benefits, are estimated at $\$ 3.64$ per hour. Table 9 shows the variable labor costs, by months. Labor costs for cultch preparation are considered to be proportional with output, and Options 1 through 4 have the same cost figures in each month. In Option 5, however, there is no variable labor costs for cultch preparation, because cultch is purchased from local dealers.

Utilities, Materials, and Supplies

Electricity - Operating time for each iten of electrical equipment was estimated, to determine the total KWH usage per moath for power and light. Costs of electricity are derived from light and power usage. For example, a l-hp motor
Table 8. Annual Fixed Costs, by Plant and Option

$$
\left\lvert\, \begin{array}{lll}
n & \infty & 0 \\
0 & 8 & 0 \\
0 & 0 \\
\hline
\end{array}\right.
$$

Depreciation.
Interest on investment...
Insurance \& taxes.........
Repair \& maintenance.....
Travel expense.
ixed labor...................
Total.............

(continued)
Table 8. Annual Fixed Costs, by Plant and Option (continued)

$\begin{aligned} & \text { PLANT IV: } \\ & \text { Building }{ }^{\text {a/ }} \end{aligned}$	New					Used				
Option	1	2	3	4	5	1	2	3	4	5
			dollars					dollars		
Depreciation.	13,497	13,897	13,367	13,767	12,367	12,207	12,607	12,077	12,477	11,077
Interest on investment...	17,101	17,365	17,015	17,279	16,355	9,687	9,951	9,601	9,865	8,941
Insurance \& taxes..	7,058	7,162	7,024	7,128	6,764	3,880	3,984	3,846	3,950	3,586
Repair \& maintenance.	4,072	4,132	4,052	4,112	3,902	3,461	3,521	3,441	3,501	3,291
Travel expense...	1.000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Fixed labor...............	50,815	50,815	50,815	50,815	50,815	50,815	50,815	50,815	50,815	50,815
Total..........	93,543	94,371	93,273	94,101	91,203	81,050	81,878	80,780	81,608	78,710

Building ${ }^{\text {a/ }}$	New					Used				
Option	1	2	3	4	5	1	2	3	4	5
			dollars					dol1ars		
Depreciation.............	14,744	15,147	14,617	15,017	13,617	13,330	13,730	13,200	13,600	12,200
Interest on investment...	18,737	19,001	18,651	18,915	17,991	10,588	10,852	10,503	10,767	9,843
Insurance \& taxes........	7,734	7,838	7,700	7,804	7,440	4,242	4,346	4,208	4,312	3,948
Repair \& maintenance.....	4,462	4,522	4,443	4,503	4,293	3,790	3,850	3,771	3,831	3,621
lravei expense............	1,000	1,00゙u	1,000	1,000	1,000	1, vu0	1,000	1,000	1,000	1,000
Fixed labor..............	50,815	50,815	50,815	50,815	50,815	50,815	50,815	50,815	50,815	50,815
Total.	97,495	98,323	97,226	98,054	95,156	83,765	84,593	83,497	84,325	81,427

[^1]Table 9. Monthly and Annual Variable Labor Costs, by Plant and Option

Plant	Cultch preparation method	Costs of each month, by season				
		$\begin{aligned} & \text { Winter } \\ & \text { (0ct-Jan) } \end{aligned}$	Late winter (Feb)	$\begin{gathered} \text { Spring } \\ \text { (Mar-Apr) } \end{gathered}$	$\begin{gathered} \text { Sumer } \\ \text { (May-Sept) } \end{gathered}$	$\begin{array}{r} \text { Annual } \\ \text { cotal } \end{array}$
			-------	dollars		
I	Options 1-4......	58	233	349	466	3,494
	Option 5.........	--	--	--	--	3,494
II	Options 1-4......	78	311	466	621	4,659
	Option 5..........	-0	--	--	--	4,659
I II	Options 1-4......	97	388	582	777	5,824
	Option 5..........	--	--	--	1	5,824
IV	Options 1-4......	117	466	699	1,930	11,981
	Option 5..........	-	--	--	-998	4,992
V	Options 1-4......	136	544	815	2,085	
	Option 5..........	--	--	--	998	$4,992$

consumes 746 watts of electricity per hour of operation. Twenty percent of total KWH usage is added for allowance to the total cost figures.

The following rate schedule is applied in estimating monthly charges for electric power:

Billing demand:
No charge for the first 20 kw
$\$ 1.25 / \mathrm{kw}$ for the remainder.
Energy charges:
\$5 mintmum for less than 100 KWH
2 c per KWH for the next 403 KWH
$1.7 ¢$ per KWH for the next $4,500 \mathrm{KWH}$
0.7 c per KWH for the next $35,000 \mathrm{KWH}$
.48 c per KWH for the next $40,000 \mathrm{KWH}$.

Table 10 shows the example of 11 ght and power usage for Option 1 of Plant . Tables of light and power usage for other plants and options have been eliminated.

Table 11 shows the monthly power demand and charges, by plant. Demand charges range from $\$ 6.30$ to $\$ 40$ per month for 1 lant I, and from $\$ 10$ to $\$ 43.80$ for Plant V.

Table 12 shows the costs of electricity, including demand charges, by plant. These costs varied from $\$ 142$ to $\$ 210$ per month for Plant I, and $\$ 190$ to $\$ 279$ per month for Plant V.

Fresh Water - The major use of fresh water is for cultch preparation. It varies directly with the amount of cultch required. Either fresh or salt water can be used for cultch preparation, depending an the option chosen. In general, 210,000 gallons of water, including a 40 percent allowance for cleaning and waste, is used to clean 200 cases of oyster shell. Very little water is used In algal food production. It was assumed that fresh water usage in the restroom and lunch room, and for algae production, including 40 percent for waste and other personal use, averages 40 gallons per day per person. The following rate schedule was applied in estimating monthly charges for fresh water:

Water Rates:

$\$ 9 \quad$ minimum for less than 6,000 gallons
$.095 ¢$ per gallon for the next 14,000 gallons
$.090 ¢$ per gallon for the next 20,000 gallons
$.080 ¢$ per gallon for the next 40,000 gallons
$.065 ¢$ per gallon for the next $1: 0,000$ gallons
$.050 ¢$ per gallon for the next $8(10,000$ gallons
$.030 ¢$ per gallon for the remaincler.

Table 13 shows the fresh water usage and costs, by month. Options 1, 2 , and 5 do not use fresh water in preparing cultch, and have a minimum charge of $\$ 9$ per month, except for sumer months (May through September), in Plants IV and V. Options 3 and 4 use fresh water in cleaning cul.tch, and have a water cost up to $\$ 840$ per month during summer, in Plant V.

Sewer and Garbage Disposal - The sewer charge considered here is based on the
Table 10. Monthly and Annual Light and Power Usage for Plant I, Option 1

Item ${ }^{\text {a/ }}$ by operation stage	Capacity	Usage each month, by season				
		$\begin{gathered} \text { Winter } \\ \text { (Oct-Jan) } \end{gathered}$	Late winter (Feb)	$\begin{gathered} \text { Spring } \\ \text { (Mar-Apr) } \end{gathered}$	$\begin{gathered} \text { Summer } \\ \text { (May-Sept) } \end{gathered}$	Annual total
		------	--------	lowatt hour	----	-----
Conditioning \& spawning						
Little pump (1)..............	$1 / 10 \mathrm{hp}$	54	54	54	--	376
Algal production						
Autoclave (1)...............	2.5 kw	10	10	32	32	274
Refrigerator (1).............	400 W	146	146	146	146	1,752
Water generator (1)..........	5.2 kw	13	13	26	26	247
Refrigeration unit (1)......	1.1 kw	396	396	396	396	4,752
Fluorescent light (142).....	40 w	4,090	4,090	4,090	4,090	49,075
Air compressor (1)...........	1/3 hp	179	179	179	179	2,152
Larval rearing						
Light (19).....................	40 w	186	202	240	403	3,440
Heater (1).....................	3 kw	2,160	2,160	1,080	--	12,960
Air compressor (1)..........	1/3 hp	179	179	179	179	2,152
Larval setting						
Light (14)....................	40 w	45	67	101	134	1,120
Alr compressor (1)..........	1.5 kw	155	387	580	774	6,037
Heater (1)....................	3 kw	2,160	2,160	1,080	--	12,960
Cultch preparation						
Shell tumbler (1)	2 hp	5	21	31	42	313
Conveyor (2).................	2 hp	10	42	62	84	626
Bay pump (1)..................	30 hp	78	313	470	627	4,700
Other						
Bay pump (1)..................	5 hp	2,686	2,686	2,686	2,686	32,232
Inside pump (1)...............	3 hp	528	528	528	528	6,336
Office heater (1)............	1.5 kw	360	--	--	--	1,440
Light (10)....................	40 w	96	96	96	96	1,152
Total..............		13,536	13,729	12,056	10,422	144,096
20\% allowance.......		2,707	2,746	2,411	2,084	28,819
GRAND TOTAL.........		16,243	16,475	14,467	12,506	172,915

[^2]Table ll. Montily Power Demand and Charses, by Plant

Item	Culteh mremaralion methed				
	Option 1	Option 2	0 ption 3	Option 4	Option 5
Demand		-------	kilorat cs	\cdots	-
Plant $\mathrm{I} . .$.	52	25	30	25	25
Plant II...	52	25	30	25	25
Plant III...........	52	25	30	25	25
Plant IV........	55	28	33	28	28
Plant V............	55	28	33	28	28

Charges					
Plant I.............	40.0	6.3	12.5	6.3	6.3
Plant II............	40.0	6.3	12.5	6.3	6.3
Plant III...........	40.0	6.3	12.5	6.3	6.3
Plant IV....	43.8	10.0	16.3	10.0	10.0
Plant V.............	43.8	10.0	16.3	10.0	10.0

Table 12. Monthly and Annual Costs of Electricity (Inciuding Denand Charges), by Plant and opeion

Plant	Cultch preparation method	Costs each month, by season				
		$\begin{aligned} & \text { Winter } \\ & \text { (Oct-Jan) } \end{aligned}$	$\begin{aligned} & \text { Late winter } \\ & \text { (Feb) } \end{aligned}$	$\begin{aligned} & \text { Spring } \\ & \text { (:ar-Apr) } \end{aligned}$	Sumner (May-Sept)	Annual total
I				ars		
	Option 1......	208	210	196	182	2,344
	Options 2,4,5.	174	173	157	142	1,892
	Option 3......	180	180	164	149	1,975
II	Option 1......	219	222	208	195	2,492
	Options 2,4,5.	185	184	168	153	2,025
	Option 3......	191	191	176	161	2,109
III	Option 1......	230	234	221	208	2,638
	Options 2,4,5.	195	195	179	164	2,155
	Option 3....*	202	202	187	172	2,243
IV	Optton 1.......	263	267	246	225	2,936
	Options 2, 4,5 .	228	227	203	178	2,435
	Option 3......	234	234	211	187	2,527
v	Option 1......	274	279	259	238	3,083
	Options 2,4,5.	238	238	214	190	2,568
	Option 3......	245	245	222	198	2,661

Table 13. Monthly and Annual Fresh Water Usage and Costs, by Plant and Option

Item and plant	Cultch preparation method	Usage and costs each month, by season					
		Winter (Oct-Jan)	Late winter (Feb)	$\begin{gathered} \text { Spring } \\ \text { (Mar-Apr) } \end{gathered}$	$\begin{gathered} \text { Summer } \\ (\text { May-Sept }) \end{gathered}$	Annual total	
Usage:							
I	Options 1,2,5	4,080	4,320	4,480	4,640	52,800	
	Options 3,4	109,080	424,320	634,480	844,640	6,352,800	
II	Options 1,2,5,	4,107	4,427	4,640	4,853	54,400	
	Options 3,4	144,807	565,127	844,640	1,124,153	8,454,400	
III	Options 1,2,5	4,133	4,533	4,800	5,067	56,000	
	Options 3,4	178,433	703,833	1,054,800	1,405,767	10,556,000	
IV	Options 1,2,5	4,160	4,640	4,960	6,650	64,450	
	Options 3,4	214,160	844,640	1,264,960	1,686,650	12,664,450	
v	Options 1,2,5	4,187	4,747	5,120	6,863	66,050	
	Options 3,4	249,887	985,447	1,475,120	1,966,163	14,766,050	
Costs:							
I	Options 1,2,5	9	9	9	9	108	
	Options 3,4	91	262	367	473	3,725	
II	Options 1,2,5	9	9	9	9	108	
	Options 3,4	114	333	473	588	4,674	
III	Options 1,2,5	9	9	9	9	108	
	Options 3,4	136	402	567	672	5,440	
rv	Options 1,2,5	9	9	9	10	112	
	Options 3,4	157	473	630	756	6,143	
V	Options 1,2,5	9	9	9	10	112	
	Options 3,4	175	543	693	840	6,830	

fresh water used by the hatchery, excluding the fresh water for cultch preparation. Following is the rate schedule applied in estimating monthly sewer charges:

Sewer rates:

$\$ 6$ minimum for less than 6,000 gallons . 06c per gallon for the next 14,000 gallons . 04c per gallon for the next 20,000 gallons .025 per gallon for the remainder.

According to this schedule, sewer charges per month are $\$ 6$ for each plant, except for the sumer months, in Plants IV and V. During the summer months, the monthly sewer charges are $\$ 6.39$ and $\$ 6.52$ for flant $I V$ and Plant V, respectively. Rates for garbage disposal are assigned $\$ 20$ per month for each plant.

Nutrients and Material = Algal food requirements in Plant I are 700 gallons per day during summer, and 250 gallons per day during winter. Food requirements, by months and by plants, are shown in Table 14 , A 50 percent allowance is made for waste and emergency purposes. Food requirements are proportional with output level.

Algae medium costs are estimated at lc per gallon. Because of a 50 percent allowance above the normal food requirements, the cost of algae medfum at lf per gallon allows for the use of the vitamins and metal compounds needed for algae production, and also for other chemicals used in the hatchery. These costs varied from $\$ 113$ to $\$ 315$ per month for Plant I, and from $\$ 262$ to $\$ 735$ per month for Plant V.

The highest material cost is for cultch preparation. A one-bushel size meshed bag costs 30 c, and one bushel of oyster shell costs 30 . In estimating material costs for uncleaned cultch, a 20 percent allowance is made for waste shell too small to be used for setting. For example, 125 cases (312.5 bushels) of uncleaned oyster shell and 250 meshed bags are needed to get 100 cases (250 bushels) of cleaned cultch. Therefore, the material costs for 100 cases of cleaned cultch are $562.5 \times \$ 0.30$, or $\$ 168.75$.

Estimated material costs for cultch preparation are presented in Table 15. These costs are proportional with output level, and the values are the same for

Table 14. Monthly and Annual Algal Food Requirements, by Plant, Options 1 through 5

Plant	Food requiremetts each month, by season				
	Winter (Oct-Jan)	Late winter (Feb)	$\begin{gathered} \text { Spring } \\ \text { (Mar-Apr) } \end{gathered}$	Summer (May-Sept)	Annual total
			gallons		
I.	11,250	19,900	25,715	31,500	273,930
II.	14,990	26,520	34,265	41,975	364,885
III.	18,760	33,185	42,880	52,530	456,635
IV.	22,500	39,800	51,430	63,000	547,660
V.	26,240	46,420	59,980	73,475	638,715

Table 15. Monthly and Annual Material Costs for Cultch Preparation, by Plant and Option

Plant	Cultch preparation method	Costs each month, by season				
		Winter (Oct-Jan)	$\begin{gathered} \text { Late winter } \\ \text { (Feb) } \end{gathered}$	$\begin{aligned} & \text { Spring } \\ & \text { (Mar-Apr) } \end{aligned}$	$\begin{gathered} \text { Sumer } \\ \text { May-Sept) } \end{gathered}$	Annual total
				dollars		
I	Options 1-4	169	675	1,012	1,350	10,125
	Option 5.	450	1,800	2,700	3,600	27,000
I I	Options 1-4	226	901	1,350	1,799	13,500
	Option 5...	603	2,403	3,600	4,797	36,000
III	Options 1-4	280	1,124	1,688	2,251	16,875
	Option 5.	747	2,997	4,500	6,003	45,000
IV	Options 1-4	338	1,350	2,025	2,700	20,250
	Option 5...	900	3,600	5,400	7,200	54,000
V	Options 1-4	395	1,576	2,362	3,149	23,625
	Option 5...	1,053	4,203	6,300	8,397	63,000

Options 1 through 4 for each plant. These costs ranged from $\$ 169$ per month during the winter months to $\$ 1,350$ per month cluring the summer months for Plant I, and from $\$ 395$ per month during the winter months to $\$ 3,150$ per month during the summer months for Plant V. Current market price (as of April 1976) of already-cleaned cultch (oyster shell in meshed bag) is $\$ 4.50$ per case. The material costs for Option 5 in each plant are in proportion to output level. In Table 15 the material costs for Option 5 varied from $\$ 450$ per month during the winter months to $\$ 3,600$ per month during the summer months for Plant I, and from $\$ 1,053$ per month during the winter months to $\$ 8,397$ per month during the sumer months for Plant V.

Fuel and 011 - Major use of fuel and ofl $1 . s$ for the boiler (diesel), forklift (propane), truck (gasoline), bulldozer (gasoline), and generator (diesel). Fuel consumption for the boiler, using data provided by the industry, varied from 450 gallons per month during the summer months to 800 gallons per month during the winter months. The estimated fuel consumplion for forklift, truck, bulldozer, and generator was 2, 3, 2, and 4 galions per hour of operation, respectively. The approximate fuel prices per gallon were $40 ¢$ for diesel, $60 c$ for gasoline, and $50 c$ for propane gas.

The forklift is used for the larval setting stage, and the operating hours for this machine are about 40 minutes (in and out) for every 20 cases of oyster seed. In the cultch preparation stage for Options 2 and 4, truck, bulldozer, and generator are used, and the operating hours for these machines are 1,3 , and 7 hours, respectively, to clean 200 cases of oyster shell. No generator is used for Options 1 and 3. Fuel costs for Option 5 are the lowest among the options, because there $1 s$ no cultch preparation stage in this option. Estimated fuel and oil costs in Table 16 vary from $\$ 207$ to $\$ 332$ per month for Plant I, and from $\$ 242$ to $\$ 403$ per month for Plant V.

Telephone - Telephone usage varies widely from plant to plant. The estimated annual telephone costs, including sales expensies, were $\$ 1,200, \$ 1,320, \$ 1,440$, $\$ 1,560$, and $\$ 1,680$ for Plants I, II, III, IV, and V, respectively.

Office Supplies - The annual costs of office supplies were estimated to be

Table 16. Monthly and Annual Fuel and Oil Costs, by Plant and Option

Plant	Cultch preparation method	Costs each month, by season				
		$\begin{aligned} & \text { Winter } \\ & \text { (Oct-Jan) } \end{aligned}$	$\begin{aligned} & \text { Late winter } \\ & \text { (Feb) } \end{aligned}$	$\begin{gathered} \text { Spring } \\ \text { (Har-Apr) } \end{gathered}$	$\begin{gathered} \text { Summer } \\ \text { (May-Sept) } \end{gathered}$	$\begin{aligned} & \text { Annual } \\ & \text { total } \end{aligned}$
I	--------------- 1 -					
	Options 1,3	326	304	276	228	3,301
	Options 2,4	332	326	310	273	3,638
	Option 5	323	293	260	207	3,140
II	Options 1,3	328	312	288	244	3,422
	Options 2,4	336	342	333	304	3,870
	Option 5	324	298	267	215	3,206
III	Options 1,3	330	320	300	260	3,543
	Options 2,4	339	358	356	335	4,103
	Option 5	326	302	273	224	3,273
IV	Options 1,3	332	328	312	277	3,664
	Options 2,4	343	373	380	366	4,336
	Option 5	327	307	280	233	3,340
V	Options 1,3	334	336	324	293	3,784
	Options 2,4	347	389	403	397	4,568
	Option 5	328	311	287	242	3,406

$\$ 600, \$ 660, \$ 720, \$ 780$, and $\$ 840$, corresponding to Plants $I, ~ I I, ~ I I I, ~ I V$, and V. This includes bookkeeping supplies and other materials to be used in the office.

The costs of office supplies and telephone nust vary, month by month, among plants, but it is impossible to predict month-by-month variations for these costs. Therefore, the estmated annual costs for office supplies and telephone were averaged to estimate monthly costs to be used for each plant.

Variable Repairs and Maintenance

In addition to having fixed costs associated with repairs and maintenance, some machinery requires maintenance which varies with length of usage. The variable repairs and maintenance costs for machinery were estimated at 0.5 percent of the initial investment costs for that machinery per 100 hours of operation.

Table 17 shows the estimated costs of variable repairs and maintenance for machinery, by plant and option.

Table 17. Monthly and Annual Costs of Variable: Repairs and Maintenance for Machinery, by Plant and Option

Plant	Cultch preparation method	Costs each month, by season				
		Winter (Oct-Jan)	$\begin{gathered} \text { Late winter } \\ \text { (Feb) } \end{gathered}$	$\begin{gathered} \text { Spring } \\ \text { (Mar-Apr) } \end{gathered}$	$\begin{gathered} \text { Sumper } \\ \text { (May-Sept) } \end{gathered}$	$\begin{aligned} & \text { Annual } \\ & \text { total } \end{aligned}$
I						
	Option 1	69	78	77	75	885
	Option 2	70	81	81	80	927
	Option 3	69	77	76	73	871
	Option 4	70	80	80	79	913
	Option 5	68	73	70	65	807
II	Option 1	70	81	81	80	926
	Option 2	71	84	87	88	982
	Option 3	70	80	80	78	908
	Option 4	71	83	85	85	964
	Option 5	68	74	71	67	823
III	Option 1	71	84	87	86	968
	Option 2	72	88	93	95	1,038
	Option 3	70	82	83	83	945
	Option 4	72	87	90	92	1,015
	Option 5	69	75	73	69	839
IV	Option 1	78	93	93	92	1,051
	Option 2	80	99	102	103	1,135
	Option 3	78	91	90	88	1,024
	Option 4	79	97	99	99	1,108
	Option 5	76	83	78	71	+896
V	Option 1	79	96	97	97	1,093
	Option 2	81	103	107	110	1,191
	Option 3	79	94	94	93	1,061
	Option 4	80	100	104	106	1,159
	Option 5	76	84	79	73	912

Others

Other variable costs included interest on operating capital and other miscellaneous expenses directly related to the production of oyster seed. These costs were allocated at 5 percent of the total variable costs (Appendix Table I).

Total Costs

Total costs and costs per case for Plants I through V are presented in Appendix Tables $I-1$ through I-5. These costs, including fixed costs and variable costs, are expressed in terms of monthly as well as an annual basis. Total costs vary with options, months of the year, and size of plant.

In Options 1 through 4 for the 5 different plants, the proportion of fixed costs to the total falls between the range of 60 to 76 percent for a new building, and 57 to 74 percent for a used buflding; but, in Option 5 for those plants, the proportion drops to the range of 52 to 67 percent for a new building, and 48 to 64 percent for a used building.

Labor costs are the major component affecting the cost of production, ranging from 39 to 50 percent of the total in Options 1 through 4 for most plants associated with a new building, and 44 to 56 percent of the total associated with a used building. But, in Option 5, these proportions varied from 30 to 43 percent and 33 to 47 percent for those plants associated with a new building and a used building, respectively.

Utilities, materials, and supplies are the next major component affecting the cost of production, ranging from 19 to 29 percent of the total in Options 1 through 4 for all plants associated with a new building, and 21 to 32 percent for those associated with a used building. But, in Option 5, these proportions varied from 31 to 43 percent and 34 to 47 percent for those plants associated with a new building and a used building, respectively.

Figure 8 shows these relationships. Costs of labor as a percentage of the total decreases as plant size increases, but the reverse is true on utilities, materials, and supplies. Costs other than labor, utilities, materials, and supplies as a percentage of the total are relatively stable throughout all options and plants.

Average costs per case are estimated by taking total costs and dividing by cases produced. As can be seen in Appendix Tables I-1 through I-5, average costs vary with options, plants, and also with toonths of the year. During the

Figure 8. Cost categories as a percentage of total costs per case.
winter months, October through January, average costs for Plant I are around $\$ 80$ and $\$ 73$ per case for each option associated with a new and a used building, respectively. During the summer months, May through September, these costs for Plant I, associated with a new and a used building, vary between $\$ 11$ and $\$ 14$, depending on options. The range of average costs 'setween summer and winter months narrowed by increased output capacities. Figure; 9 and 10 show the range of average costs through the year for each option and plant. Annual average costs for Plant 1 , associated with a new building and i used building, ranged from $\$ 18$ to $\$ 20$ and $\$ 16$ to $\$ 18$, respectively, and those costs for Plant V ranged from $\$ 11$ to $\$ 13$ and from $\$ 10$ to $\$ 12$. Figures 11 through 14 grapincally demonstrate these variations for Plants I and V.

Returns

In this section, the influence of seasonability of production on expected monthly flow of returns and costs is identified. Price received per case of seed was assumed to be $\$ 23$, and to remain constant through the year. Tables 18 and 19 show the figures for production, total receipts, total costs, and net returns, by month, for each plant and option.
"Net returns" refer to the total recelpts after deducting all costs incurred to the production of oyster seed. In general, winter months, October through January, are the only months which have a negative net returns. The net returns continue to increase, and reach their peak during the summer months,

Table 20 shows the efficiency between net returns and total costs, based on over-all annual performance. This table gives some idea of how much average net returns would be created by a dollar of total costs for each option and plant. For example, in Option 1 for Plant I, associated with a new building, average net returns would be 27 c per $\$ 1$ of total costs. Figures 15 and 16 reveal the proportion of total costs and net returns to the total receipts.

The estimated average net returns per case are presented in Table 21 . The bigger the plant, the more net returns per case. The reader should remember that this provides only an estimate, and he should be aware of the limitations of this study because changes may occur over time.

Figure 9. Range of average costs per calse, through the year, for each option and plant assoclated with new building.

Figure 10. Range of average costs per case, through the year, for each option and plant associated with used building.

Figure 11. Fluctuation of average costs per case, by month, for Plant I associated with new building.

Figure 12. Fluctuation of average costs per case, by month, for Plant I associated witt used building.

Figure 13. Fluctuation of average costs per case, by month. for Plant V associated with new building.

Figure 14. Fluctuation of average costs per case, by month, for Plant V associated with used building
Tabie 18．Flou of keturn and Coste，by Honth，Absocinted with New Buildirg for Planned Capacity

	Itera	Jan	Feb	Ms：	$\mathrm{Apt}^{\text {Pr }}$	May	June	sult	Ars	Sept	Oct	Sov	Dee	Total
PLiNT I：														
	Production（caser）．．．．．．．．．．．．．	103	400	600	600	800	890	800	000	800	100	100	100	6，000
								dolizers						
	Totai recelpts．．．．．．．．．．．．．．．．	2，300	9，200	13，800	13，800	18，400	18，400	18，400	18，400	18，400	2，300	2，300	2，300	138，002
Option 1：														
	Total casta．．．．．．．．．．．．．．．．．．．	8.028	8，321	9.314	9，314	9，784	9，784	9，784	9.784	9，784	8，028	8，028	8，028	108，483
	Retuta，．．．．．．．．．．．．．．．．．．．．．．．．	－5， 328	379	4，486	4，436	8，616	8，516	8，616	8，616	3，616	－5，728	－5，728	－5，729	－－
	Acturulated retura．．．．．．．．．．．．．	－5，728	－5．349	－863	3.623	12，239	20， 855	29.471	38.087	46，703	40，975	35．247	29，519	29.517
Option 2：														
	Total costs．．．．．．．．．．．．．．．．．．．	8.067	8，878	9.383	9.383	9，864	9，854	9．864	9．864	9．864	8，067	${ }^{8}, 067$	8， 067	109，233
	peturn．．．．．．．．．．．．．．．．．．．．．．．．．	－5，767	322	4，417	4，417	8.576	8，536	8，536	8，536	8,536	－5，767	＋5，767	－5，767	－－
	Accmulated return．	－5，767	－5，445	－1，028	3．399	11.925	20.451	23，997	37.533	46，069	40.302	34．535	28，168	28，767
Option 3：														
Othor	Total costg．．．．．．．．．．．．．．．．．．．	8，062	9，033	9，634	9，634	10，213	10，213	10，213	10，213	10，213	8.062	8.052	8， $\mathrm{Cb2}^{2}$	111，610
	Retura．．．．．．．．．．．．．．．．．．．．．．．．．	－5，762	167	4，166	4，166	8.187	8，187	8 8，187	8.187	8，187	－5，762	－5，762	－5，762	
	Aceutulated return．．．．．．．．．．．．．．	－5，762	－5，595	－1，429	2，737	20，924	19，111	27，298	35.485	43.672	37，910	32，148	26，306	26.390
Opeion 4：														
	total costs．．．．．．．．．．．．．．．．．．．	8，131	9.121	9，735	9，735	10，327	10，327	10， 327	10，327	10，327	8，131	5，131	8，131	112，748
	Return．．．．．．．．．．．．．．．．．．．．．．．．	$-5,831$	－ 79	4.965	6，065	－8，073	8，073	8，073	8，673	8，073	－5，831	－5，831	－5， 331	
	Accusulated zeturn．．．．．．．．．．．．．	－5，831	－5，752	－1，687	2，378	10，451	13，524	26，597	34，670	42，74	36.912	31，081	25，250	25，252
Option 5：														
	Total costs．．．．．．．．．．．．．．．．．．．	8，026	9，508	10，459	10，459	11，397	11，397	11，387	11，387	11，387	8，026	8.026	8，926	119，467
	Refurn	－5，726	-308 $-6,034$	3,361 $-2,693$	3，341	7，013	7.013 14.674	${ }^{7,013} \mathbf{2 1 , 6 8 7}$	7,013 28,700	7,013 35,713	－5，726	－5，726	－5，726	18，533
	Accuolated recur	－5，726	－6，034	－2，693	648	7，661	14，674	21，687	28，700	35，713	29，987	24，261	18，535	18，533

7，097：84：000
$8,542-842 \quad 119.079$

$70,379 \quad 64,919 \quad 64,921$
$6.583 \quad 119,945$
妿 69，557
8,600
$-5,518$
66,335
8,671
$-5,589$
65,137
Fon
0
0
0

11,522
12,856
3,715

1,066 1，066

$$
3.519
$$

10,944
13,574
81,279
11,039
23,479
11,490
13,028
77,371
－～～

$800 \quad 1,066 \quad 1,066 \quad 1,066$
dollara
74．518

11,039 13.479
53.601
11,490
13,029 51，115
1,612
2,896
0,523
13,156
11,352
43,239
$415 \cdot 7$
10,964
13,574
40,577
12.039
13.479
11.490
13.078空
11,622
12,896
13,156
11,362
31,877
はい 7
$\begin{array}{llll}9,813 & 10,790 & 10,290 & 10,944\end{array}$ $\begin{array}{lllll}2,669 & 5,319 & 13,429 & 27,003\end{array}$
$\begin{array}{rr}10,370 & 11,039 \\ 8,030 & 19,479\end{array}$

$\begin{array}{rr}7,692 & 13,028 \\ 12,231 & 25,257\end{array}$
 12,896
24,731 13,156
11,362
20.515
E58．0 7,563
11,835
CST＇ 6
$105^{\prime} 9$
$565^{\prime} 7$
（cont frued）
Table 13. Fiou of Retoin and Cotte, by Konth, Associated with New building for Plapoed Capacity (continued)

	Iten	San	Feb	Mar	Apr	Hny	June	July	Aus	Sept	Oet	Nov	Dee	Total
Platt ilit														
	Produceion (cases)...........	166	666	1,000	1,000	1,334	1,334	1,334	1.334	1,334	166	166	186	10,000
								doliar:						
	Total receipts.....	3,818	15,318	23,000	23,000	30,602	30,692	30,682	30,682	30,682	3,818	3,818	3,818	230,000
Opetion	$1:$													
	Total cotte...................t	8.972	10,322	12,188	11,188	12,031	12,031	12.031	12,031	12,031	8,972	8,972	8,972	128,742
	Return.........................	-5,154	4,996	11,812	11.912	18.651	18,651	18,651	18,651	18.551	-5,154	-5,154	-3,154	-
	Accusulated retura............	-5.154	-158	11.654	23,466	42,117	60,768	79.419	9a,070	126,721	111,567	105,413	101,259	101.250
Option	$2:$													
	total costa.	9.016	10,394	11,279	11.279	12,161	12,141	12,141	12.14]	12,141	9,016	9,015	9,016	129,723
	Retura...	-5.198	4,924	11,721	11,721	18,541	18,541	18,541	18,541	18,541	-5,198	-5,198	-5,198	
	Accumulated re	-5,198	-274	11,447	23,168	41,709	60,250	78,791	97,332	115,873	110,675	105,477	100,279	100,277
Option	3:													
	Total cosce.....................	9,053	10,678	11,713	11,723	12,663	12,663	12,663	12,663	12,663	9,053	9,053	9,053	133,633
	Return.........................	-5,235	4,640	11,287	11,237	18,019	18.019	18,019	18,019	18,019	-5,235	-5.235	-5,235	-
	Accuzulated return.............	-5,235	-595	10.692	21,979	39,998	58,017	26,036	94,055	112,074	106,839	101,504	96,369	96,367
Option	4 :													
	Total costh...................	9,127	10,783	11,849	11,860	12,812	12,812	12.812	12,812	12,812	9,127	9,127	9,127	135,030
	Retufa.........................	-5,309	4,535	11,160	11,160	17,870	17,870	17.870	17,870	17,870	-5,309	-5,309	-5,309	-
	Accuzulated retutn...........	-5,309	-774	10,366	21,546	39,416	57.286	75,156	93,025	110,896	105,587	100,278	94,969	94.970
Option	5:													
	Total tosca...................	9,123	11,618	13,269	13,249	14,857	14.857	14,857	14.857	14.857	9,123	9.123	9.123	148,892
	Returr.........................	-5,305	3,700 -1.605	9,751	9,751	15,825	15,825	15,825	15,825	15, 225	-5,305	-5.305	-5,305	-
	Accumulated ratura.	-5,305	-1,605	8.146	17,897	33,722	49,547	65,372	81,197	97,022	91,71	86,412	81,107	81,109

PLAST IV:

$\begin{array}{lllllll}103,277 & 122,459 & 117,375 & 112,291 & 107,207 & 107,202\end{array}$

Table 18. Fiow of Retum and Costs, by Month, Associated with Nev Duilding for Planmed Cepacity (continued)

	Iten	Ja4	Fel	Mar	Apr	May	Juse	July	${ }^{\text {Ang }}$	Sept	Oet	Nov	Dee	Total
PLATT V:														
	Production (cases).............	234	934	1,400	1,400	1,856	1,866	1,866	1, \$66	1,866	234	234	234	14,000
								dollars	--					
	Total receipts	5.382	21,482	32,200	32,200	42,918	42,918	42,918	42,918	42,918	5,382	5,382	5,392	322,009
Oprion														
	Iotal costs......................	9.936	11.842	13,053	13,053	15,310	15,310	15,310	15,310	15,310	9,936	\$,936	9,936	154.263
	Return............................	-4,554	9,640	19,137	19,137	27,608	27,608	27.608	27,608	27,608	-4,554	-4,554	-4,554	-
	Acturulated return..............	-4,554	5,086	24,223	43,360	70,968	98,576	326,184	153,792	151,400	176.846	172,292	167,736	167.737
Option														
	Iotal costs.1....................	9,984	11,930	13,177	23,177	15,651	15.452	15,451	15,451	15,451	9,934	9.284	9,934	153,4:6
	ketura............................	-4,602	9,552	19,023	19,023	27,467	27,467	27,467	27,467	27,467	-4,632	-4,632	-4,602	
	Aecumilated return..............	-4,602	4,950	23,973	42.996	70,463	97,970	125.397	152,864	180,331	175.729	171,127	166,525	166,324
Option	3:													
	Total costs.....................	10,058	12,343	13,716	13,716	16,113	16,113	16,113	16,113	16,113	20,058	10.058	10,058	160,571
	Retura..........................	-4,676	9,139	18,484	18,484	26,805	26,905	26.805	26,805	26,805	-4,676	-4,676	-4,576	
	Aecunulated return.............	-4,676	4,463	22,947	41,431	68,236	95,041	121,346	148,651	175,456	170,730	165,104	161,428	161,429
Option	$4:$													
	Fotal costr....................	10,135	12,466	13.870	13,870	16,296	16,296	16,295	16,296	16,296	10,135	10.135	10,235	162,227
	Return..........................	-4,753	9,016	18, 330	18,310	26,622	26,622	26,622	26,622	26,622	-4,753	-4.753	-4,753	-
	Accumated retuth..............	-4,753	4,263	22,593	40,923	67,545	94,167	120,789	147.411	174,033	169,280	164,527	159,774	159,773
Option	$5:$													
	Totsi costs......................	10,242	13.752	16,040	16,040	19,354	19,354	19,354	19,354	19,354	10,242	10,242	10,242	183,571
	Rerura...........................	-4,860	7,730	16,150	16,160	23, 764	23, 564	23,564	23, 564	23,564	-4,860	-4,0.50	-4,869	-
	Acciveslated retum.............	- 0,560	2,870	29,030	35,190	58.754	82,318	105,392	129,446	153,010	148,150	143.290	139,430	135,429

Tuble 19. Flow of Keturn and Coate, by Month, Aswocisted with Used Buldify for Planned Capacity

	Iter	Jan	Feb	Mer	Apr	May	Jome	July	Aus	Sept	Det	Hov	Dee	Tot*1
Ptast I:														
	Production (csaea)	100	400	600	600	800	800	800	800	800	100	100	100	6,003
								dollars						
	Total receipta................	2,300	9,200	13,800	13,800	18,400	18,400	18,400	18,400	18,400	2,300	2,300	2,300	138,000
Option	$1:$													
	Totai coste	7.291	8,084		8,577	9.047	9.947	9,047	9,047	9,047	7.291	7,291	7,291	99,635
	Retura.........................	-4,991	1,116	5,223	5,223	9,353	9.353	9,353	9,353	53,353	-4.991	$-4,991$ 43,354	-4,991	
	Accurulated retum,	-4,991				15,324	25,277	34,630	43,983	53.336	48,345	43,354	38,363	38,365
Option														
	Total costi	7,330	8,141	8,645	8.645	9.127	9.127	9,127	9.127	9.127	7.330	7,330	7,330	100,385
	Return..........................	-5,030	1,059	5,155	5,155	${ }^{9,273}$	2,273	9,273	9,273	9.273	-5,030	-5,030		
	Accusulated retuta..............	-5,030		1,184		15,612	24,885	34,158	43,431	52,704	47,674	42,544	37,614	37,615
Opt 100														
	Total coste	7.325	8,295	8,897	8,897	9,475	9,475	9,475	9,475	9,475	${ }_{-5}^{7.325}$	7,325	7,325 -5025	102,763
	Rettrn.........................	-5,025	905	4,903		8,925	8,925	8,925	8,925	8,925	-5.025	-5,025	-5,025	- ${ }^{517}$
	Accuzulared return..............	-5,025	-4,120	783	5,696	14,611	23,536	32,461	41,386	30,311	45.286	40,261	35,236	35.237
Option	$4:$													
	Total costs....................	1,394	8, 364	8,998	8,998	9,590	9,590	9,590	9,590	9,590	7.394	7,394	7,394	103,961
	Return..........................	-5,094		4,802		8,810	8,810	8,810	8,810	8,910	-5,054	-5,094	-5,094	
	Actumbated return..............	-5,094	-4,278	524	5,326	14,136	22,946	31,756	40,56\%	49,376	44,282	39,188	34,034	34,099
Option	$5:$													
	Total costs....................	7,289	8,770	9,721	9,721	10.650	10.650	10,650	10,650	10,650	7,289	7,289	7.289	110,620
	Retura,........................	-4,989	430 -4.599	4,079	4,979	7,750 11,349	7.750 19.099	7,150 26,849	7,750 34,599	7,750 42,349	-4,989	-4,939	-4,989	
	Aceramiated return............	-4,989	-4,559	-480	3,599	11,349	19,099	26,849	34,599	42,349	37,360	32,371	27,382	27, 330

	Production (enses)	134	536	800	800	1,066	1,066	1,066	1,066	1,066	134	134	134	8,000
	Total receipta..............	3,082	12,282	18,400	18,400	24,528	24.518	24,518	24,518.	24,518	3,082	3,032	3,082	184,000
Option	$1:$													
	toral cotrs...................	7,690	8,761	9,438	9.438 8.952	10,092	10,092 14.26	10,097 14,426	10,092 14,426	10,092 14,425	7.690 -4.608	7.695 -4.605	7,690 $-4,608$	105,955
	Retura....	-4,608	3,521 $-1,087$	8,962 7,875	8,962 16,837	14,626	14,426 45,689	14,426 60,115	14,426 74,541	14,426	-44,608	79,603 79,751	35,143	75,145
Opt fion	$2:$													
	Tots: costs.	7,731	8,325	9,518	9,518	10.187	10.187	10,137	10.187	10,187	7.731	7,731	7.731	109,721
	Retutn..	-4,549	3,457	8,802	8,832	14,331	14, 331	14,311	24,331	14,331	-4,649	-4,643	-4.649	
	Accurulated retura	-4,649	-1,192	7,690	15,572	30,903	55.234	39,565	73,896	83,227	83,578	78,929	74,280	74,279
Opition	3:													
	Jotai costa. Rerum.	7,748 $-4,666$	9.045 3,237		9,866 8,534	10.638 13.880	10,638 13,680	10,638 13,880	10,638 13,880	$\begin{aligned} & 10,638 \\ & 13.880 \end{aligned}$	7,748 $-4,666$	7,748 $-4,656$	$\begin{gathered} 7,748 \\ -4,666 \end{gathered}$	112,960
	Actuzulated recum.	-4,666	3,237 $-1,429$	8,534 7,105	8,564 25.639	11,8800	13,680 43,39	13,889 57,79	11,859	13,880 85,039	$-4,8660$ 80,773	$\begin{aligned} & -4,656 \\ & 75,107 \end{aligned}$	$\frac{-6.666}{71.041}$	71,040
Option	2:	7,819					10.770	10,700	10,770	10,770	7,819	7,819	7,819	114,228
	Retum......	-4,737	3,140	8,420	8,420	13,748	13.748	13, 148	13,748	13,748	-4,137	-4,737	-4,737	
	Accomulated retum	-4,737	-1,507	6,823	15,243	28,991	42,739	56,437	70,235	83,953	79.246	74,509	69,722	69.772
Optson	5:		9.755		11,041	12,304	12,304	12, 104	12,304	12,304	7,767	7,767	7.767	124,423
	Fetura....	-4,685	2,527	7.359	7,359	12,216	12,214	12,214	12,214	12,214	-4.695	-4,695	-4,6:3	
	Accurulated retu	-4,685	-2,158	5,202	12,560	24,774	36.928	49,202	62,416	73,630	68,945	64,250	59,575	59,577

Table. 19. Flou of Peturi and Costa, by Yonth, Associsted with thed Building for' Planned Capacity (eontinued)

	Iten	Jan	Feb	Minx	Apt	Say	June	July	Aus	Sept	Oct	Nov	Dec	Total
Plavi III:														
	Production (easea).	168	666	1,000	1,000	1.334	1,334	1,334	1,334	1.334	186	266	166	10,000
	Total receipts................	3,813	15,318	23,000	23,000	30,682	30,632	30,532	30,692	30.652	3,818	3,318	3,119	230,002
Option	1:													
	Total cost 9..................	8.030	9,380	10,245	10,245	11,086	11,098	11,088	11,088	11.038	8,030	8,030	8,030	117,431
	Recurn..	-4, 212	5,938	12,755	12,755	19,594	19,594	19,594	19,594	19,594	-4,212	-4,212	-4.212	
	Acculuiated retura	-4,212	1,726	14,481	27,236	46,830	66,424	86,018	105,612	125,206	120,994	116,782	112,570	112,569
Option	2 :													
	Total cost 9.	8,073	9,452	20,337	10,337	11,199	11,199	11,199	12,199	11,199	8,073	8,073	8,073	118,412
	keturn...........	-4.255	5,366	12,663	12,663	19,483	19,483	19, 4, , 3	19,483	19,463	-4,255	-4,255	-4,235	
	Accluliated resurn	-4.255	1,61:	14,274	26,937	46,420	$65,90.3$	85, 385	104,869	124,352	120,097	115,842	121,537	211,5ss
Option	3:													
	Total costs	8.111	9,735	10,771	10,771	11.721	11,721	11, 221	11,721	11,721	8,111	8,111	8,111	122,323
	Return.......	-4,293	5,583	12,229	12.229	18,961	18,961	18,961	18,361	18,961	-4,293	-4,293	-4,293	107-57
	Accusalsted r	-4,293	1,290	13,519	25.748	44,709	63,670	82,631	101.592	120,553	115,260	111,967	107,674	107,677
Option	$4:$													
	Total costs.	8,184	9,841	12,898	10,593	11,870	11.970	11,870	11.370	11,870	8,184	8.184	8,184	123,720
	Retisn.....	-4,356	3,477	12,102	12,102	18,812	18,812	19,812	19,912	18,812	-4.366	-4,366	-4, 365	-
	securulated retur	-4,366	1,111	13.213	25,315	44,127	52,919	81.751	200,563	119,375	115.009	110,64 3	165,27	156، 280
Option	5:													
	Total costs.	8,150	10.675	12,306	12,306	13,915	13,915	13,915	13,915	13,915	8,180	8,180	8,180	137,532
	geturn............	-4,362	4.643	10,694	10,694	16,767	16,767 35,203	16,767 71,970	16,767	$\begin{array}{r}16.767 \\ 105 \\ \hline\end{array}$	${ }^{-4,362}$	$-4,362$ 96,780	$-4,362$ 92,418	
	Accumulated return.	-4,362	281	10.975	21,669	38,436	35,203	71,970	88,737	105,504	101,142	86,780	92,418	92,418

$\begin{array}{llllllllllllllllll}\text { fotal costa, } \ldots \ldots \ldots \ldots \ldots & 8,416 & 20,043 & 11,080 & 11,030 & 13,143 & 13,143 & 13,143 & 13,143 & 13,143 & 8,416 & 8,416 & 8,416 & 131,579\end{array}$ $\begin{array}{llllllll}54,595 & 109,552 & 132,209 & 155,866 & 152,050 & 148,234 & 144,419 & 144,424\end{array}$

$\begin{array}{rrrr}8,461 & 8,461 & 8,461 & 132,67 \\ 131,061 & -3,861 & -3,611 & - \\ 147,183 & 143,322 & 143,325\end{array}$ 151,044 247,183 143, 122 141,325
$\begin{array}{lllllllll}13,861 & 13,861 & 13,861 & 13,851 & 13,861 & 8,518 & 8,519 & 8,518 & 137,185\end{array}$ $\begin{array}{ll}-3,918 & -73,813 \\ 138,915\end{array}$
$\begin{array}{ccc}8,594 & 8,594 & 138,710 \\ -3,994 & -3,994 & -\end{array}$ $\begin{array}{llll}-3,594 & -3,994 & -3,994 & -7 \\ 143,278 & 141,284 & 137,290 & 137,290\end{array}$
$\begin{array}{ccc}8,643 & 8,643 & 156,305\end{array}$ $\begin{array}{rrrr}-4,043 & -4,043 & -4,043 & -7 \\ 27,785 & 123,742 & 19,699 & 119,695\end{array}$ (cont 1nued)
Table 19. Flov of Return and Conte, by Yonth, Aasociated with Uaed Builating for Planned Capacity (continued)

	Item	Jan	Feb	Mar	Apr	May	Jume	July	Aus	Sept	Oet	Hor	Dee	Total
gwir Y :														
	Production (rases)...	234	934	1,400	1,400	1,866	1,806	1,868	1,866	1,868	234	234	234	14,000
								dollins						
	Total receipts.	5,382	21,482	32,000	32,000	42,918	42,913	42,916	42,918	42,918	5,392	5,382	5,392	322,000
Opt														
	Total coste....................	8,792	10,698	11,919		14,166		14,165				8,792	8.792	140,533
	Retum.	-3.410	10,784	20,281	20,281	28,752	28,752	28,752	23, 752	28,752	-3,410	-3,410	-3,410	-
	Accumulated setura........	-3,410	7,374	27,655	47,935	76,688	105,440	134,192	162,944	191,696	188,286	184,875	181,465	131,467
Optioa	2:													
	Total cotth..................	8,840	10,786	12,033		14,307.	11. 307	14.307	14,307	14.307	8,840	8,840	8,840	141,746
	Retum..........................	-3,458	10,696	20,167	20, 167	28,611	23,611	23,611	28,611	28.611	-3,458	-3,458	-3,458	
	Accusulated return.	-3,458	7,238	27,405	47,572	76,183	104.794	133,105	162.016	190,627	187,169	183,711	180,253	180,254
Option	3:													
	Total costa....................	8.914	11,199	12,572	12,572	14,969	14,969	14,969 27.949	14,969 27,949	14,969 27.949	8,914 $-3,532$	8,914 $-3,532$	8,914 $-3,532$	146,842
	Retum..	-3.532	10,283	29,628	19,623	27,949	27,949	27,949	27,949	27,949	-3,532	-3,532	-3,532	
	Accuariated return.............	-3,532	6,751	26,379	46,007	73,956	101,905	129,854	157,303	185,752	182,220	178,698	175.256	175.153
Oprion	4:													
	Total costs...................	8,991	11,322	12.725	12,725	15,152	15,152	15,152	15,132	15,152	8,991	8,991	8,991	148,493
	Rerurn.........................	-3,609	10,160	19.475	19,475 45,501	27,766	27,766	27,766	27,766	27,766	-380,609	${ }_{177113}$	${ }_{173,509}$	
	accusulated returb.......	-3,609	6,551	26,026	45,501	73,267	101,033	128,799	156,565	184,331	180,122	177,113	173,504	173,502
Option	$5:$													
	Tetal cests.....................	-3,098	12,609 8,874	14,898 17,304	17,304	24,709	24,709	24,708	24, 703	24,708	-3,716	-3,126	-3,726	
	Acrumileced recurn..............	-3,720	5, iso	22, 3 52	3n,	$8{ }^{4} 4$	3n, + 22	112,500	130.598	26, 206	152, 500	125,974	152,259	252.159

ke:e: Sum of individual itaman mat be equal to the total becsuge of rounding,

Table 20. Efficiency: Average Net Returns Per Dollar of Total Costs

Type of building	Plant	Option				
		1	2	3	4	5
New		dollars				
	I...	. 27	. 26	. 24	. 22	. 16
	II..	. 55	.53	. 49	. 48	. 37
	III.	. 79	.7\%	. 72	. 70	. 54
	IV.	. 92	.90	. 84	. 83	. 64
	V..	1.09	1.0%	1.01	. 98	. 75
Used		. 38	. 37	. 34	. 33	. 25
	II.	. 69	. 68	. 63	. 61	. 49
	III.	. 96	. 94	. 88	. 86	. 67
	IV.	1.10	1.08	1.01	. 99	. 77
	V..	1.29	1.27	1.19	1.17	. 90

Table 21. Average Net Returns Per Case

Type of building	Plant	Option				
		1	2	3	4	5
				doilar	--	---
New		4.92	4.80	4.40	4.21	3.09
	II.	8.12	8.01	7.60	7.44	6.17
	III.	10.13	10.03	9.64	9.50	8.11
	IV.	10.99	10.91	10.53	10.40	8.93
	V...	11.9911 .90		11.53	11.42	9.88
Used		6.39	6.27	5.87	5.68	4.56
		9.40	9.29	8.88	8.72	7.45
	III	11.26	11.16	10.77	10.63	9.24
	IV.	12.03	11.95	11.57	11.44	9.97
	V..	12.97	12.88	12.51	12.40	10.86

Figure 15. Proportion of total costs and total net returns to the total receipts assciciated with new building.

Figure 16. Proportion of total costa ad total net returns to the total receipts associated with used building.

As stated earlier, Option 5 does not have a cultch preparation stage. Therefore, in Table 21 the figures between Options 1 through 4 and Option 5 are the indications of how much money can be saved in each option if cultch is prepared by plant facilities. More specifically, depending on options chosen, $\$ 1.12$ to $\$ 1.83$ and $\$ 1.54$ to $\$ 2.11$ per case are saved In Plant I and Plant V, respectfvely, if cultch is prepared by the plant. This result is dependent, of course, upon the assumed cost conditions for cultch preparation and the assumed price of $\$ 4.50$ per case of pre-cleaned cultch.

Average costs per case associated with cultch preparation in different options and plants can be found in Table 21 . Since a cost of $\$ 4.50$ per case is assigned for cultch in Option $5, \$ 4.50$ minus the difference between average net returns per case for Options 1 through 4 and Option 5 are the average costs per case associated with cultch preparation for that particular option and plant. Table 22 shows the average costs per case assoctated with cultch preparation in different options and plants. There is no difference in costs of cultch preparation between a new building and a used building. The average cultch preparation costs per case for Plant I ranged from $\$ 2.67$ to $\$ 3.38$, and for Plant V from $\$ 2.39$ to $\$ 2.96$. These costs decrease as plant capa 2 ity increases, mainly because of sliding scale charges of city water and power. Table 23 demonstrates that costs of cultch preparation contribute a substantial percentage of total costs per case of oyster seed. For Option 5, purchased cultch accounts for about 23 to 37 percent of the total costs.

Monthly and cumulative seed production and total receipts and costs for Plant I appear in Figures 17 and 18. These figures reveal the distribution of total receipts, total costs, and total returns, whish would be generated through the year for Plant I. The vertical distance between total receipts and total costs represents cumulative net returns. Cumulative total costs for Option 5 are the highest, and those of 0ption 1 are the lowest. Cumulative total costs of all other options (Options 2 through 4) fall within this range.

Cumulative total costs and total recelpts associated with a new building and a used building, for Plants I and V, are compared in Figure 19.

Table 22. Average Costs Per Case Associated with Cultch Preparation

Type of building	Plant	Option				
		1	2	3	4	5
Both new and used				dolla		--
	I...............	2.67	2.79	3.19	3.38	4.50
	II..............	2.55	2.66	3.07	3.23	4.50
	III.............	2.48	2.58	2.97	3.11	4.50
	IV..............	2.43	2.52	2.90	3.03	4.50
	V...............	2.39	2.48	2.85	2.96	4.50

Table 23. Costs of Cultch Preparation As a Percentage of
Total Costs Per Case

Figure 17. Monthly and cumulative oyster seed production, total receipts and costs associfited with new building for Plant I, Options 1 and 5.

Figure 18. Monthly and cumulative oyster seed production, total receipts and costs associated with used building for Plant I, Options 1 and 5.

Figure 19. Cumulative total receipts and costs associated with new building and uged building for Plants I and V.

As the size of the plant and the scale of operation become larger, considering expansion from the smallest possible plant, certain economies of scale are usually realized. That is, after adjusting all inputs optimally, the unit cost of production can be reduced by increasing the size of the plant. Two broad forces - specialization of labor and technological factors - enable producers to reduce unit cost by expanding the scale of operation. These forces give rise to the negatively sloped portion of the long-run average cost curve [2], and are practically demonstrated in the next section.

Analysis of size economies is usually consifered in terms of short- and longrun situations. According to Madden [7], short-cun economies are viewed as resulting from fuller utilization of a fixed plant, and long-run economies as resulting from efficiencies obtained by changing plant size, presumably involving a longer time period. The treatment of any resources as "fixed" is usually based on the length of the planning horizon being examined, the longevity of the resources $1 n-$ volved, and the costs of changing these resourceis. Which resources are treated as "fixed" in the short-run has no effect on the eventual shape of the long-run average cost curve. The long-run average cost curve assumes all resources are variable, including those designated as fixed in the short-run. A curve that is drawn tangent to the short-run curves approximates the long-run economies-of-size curve for that range of output represented by the short-run curves. This curve indicates the average total cost of production that would be experienced by firms of different sizes under assumed price relationships and technologies.

Short-Run and Long-Run Cost Functions

This section will cover the cost of production for the designed 5 plants, both at full capacity and at two lesser capacities, and under the short- and long-run conditions, Long-run planning cost functions can be derived from Tables 24 and 25, using 5 observations. Two additional points were estimated for each option and plant by reducing output by 10 and 20 percent from the planned capacity, in order to get the short-run cost functions. Such a reduction of output does not affect the fixed costs. Variable costs, depending on the characteristics of the ftem, may or may not change. Variable costs associated with cultch preparation, and

Table 24. Cost Changes Within Plants, with Respect to Output Per Year, Associated with jew Ruflding

Table 25. Cost Thages Within Plants, with kespect to Output Per Year, Associated with Used Bufldirg

labor costs for summer helpers, would vary in direct proportion to the output reduction. 011 costs for the boiler, charges for electric demand, sewer, garbage, telephone, and costs for 11 ght and power other than cultch preparation would remain constant with output reductions of 10 and 20 percent.

The following long-run average production cost functions have been made with the stmple linear regression method, using 5 observations based on Tables 24 and 25. These functions show the expected averagie costs per case for options and plants of full output capacity with a given condition and technology.

Functions associated with new building:

$$
\begin{equation*}
\mathrm{APCN}_{2}=\frac{\$ 73,055}{\mathrm{~V}}+\$ 5.8854 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{APCN}_{3}=\frac{\$ 73,526}{\mathrm{~V}}+\$ 6.2209 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{APCN}_{1}=\frac{\$ 72,651}{\mathrm{~V}}+\$ 5.8277 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{APCN}_{4}=\frac{\$ 74,277}{V}+\$ 6.2855 \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{APCN}_{5}=\frac{\$ 69,896}{V}+\$ 8.1179 \tag{5}
\end{equation*}
$$

Functions associated with used building:

$$
\begin{equation*}
\mathrm{APCU}_{1}=\frac{\$ 67,346}{\mathrm{~V}}+\$ 5.2260 \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{APCU}_{2}=\frac{\$ 67,750}{\mathrm{~V}}+\$ 5.2837 \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
A \mathrm{PCU}_{3}=\frac{\$ 68,223}{\mathrm{~V}}+\$ 5.6192 \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{APCU}_{4}=\frac{\$ 68,973}{V}+\$ 5.6838 \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{APCU}_{5}=\frac{\$ 64,592}{\mathrm{~V}}+\$ 7.5162 \tag{10}
\end{equation*}
$$

where:

$$
\begin{aligned}
\mathrm{APCN}_{1} \cdots \mathrm{APCN}_{5}= & \text { average production costs per case, } \\
& \text { associated with new building, for } \\
& \text { Options } 1-5 .
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{APCU}_{1} \cdots \mathrm{APCU}_{5}= & \text { average production costs per case, } \\
& \text { associated with used building, for } \\
& \text { Options } 1-5 . \\
V= & \text { output of oyster seed, by cases, } \\
& \text { per year. }
\end{aligned}
$$

The long-run average production cost curve, or function, is a relationship between costs and output, which shows the minimum average production costs for any level of output when all inputs are variable. Figures 20 through 23 show the relationship of short-run to long-run average production costs. There are "fixed" factors associated with each of these figures, however. In Figures 20 and 21, the cultch preparation method of Option 1 is applied to all of the curves, while In Figures 22 and 23 Option 5 is used. The solid lines are the long-run average cost curves or the long-run planning cost curves, and the dotted lines are the short-run average cost curves for the fixed plants, Plants I through V.

These figures show that the long-run average cost curves are downard sloping, and mean that as the size of plant increases, the average costs per case decrease when plants are operating at near capacfty. These downward-sloping parts are associated with economies of size. As shown in these figures, the short-run average cost curves (all the dotted lines) are moving towird the long-run planning costs until they coincide, when the rate of output nears capacity. The production at which the short-run average cost is the lowest is the most efficient rate of output. For any plant, operating at below capacity increases average costs significantly. For example, in Option 1 , operating at 80 percent of capacity increases average costs by $\$ 3.78$ and $\$ 1.93$ per case for Plarits I and V, respectiveiy, associated with a new building, and by $\$ 3.41$ and $\$ 1.69$ per case for chose plants assom ciated with a used building, respectively. No atiempt was made to estimate costs for those operations in excess of the full capacity.

There are definite econories of size with increasing plant capacity. As the plant capacity increases from 6,000 to 14,000 cases per year, average costs per case decrease between 35 and 40 percent for all options. Figures 20 through 23 indicate that further economies of size might exist for even larger plants. The slopes of the long-run average production cost curves are negative and, within the output range examined, do not become parallel to the horizontal axis, because

Figure 20. Relation of short-run to long-run average production costg
associated with new building fn Option 1 for Plants I to V. absociated with new building in Option 1 for Plants I to V.
Production per year, cases

each successive plant has a lower average cost per case when it operates at its planned capacity.

Tigures 24 and 25 show the long-run average production cost curves under different options. Option 1 has the lowest average costs, and Option 2 has the second lowest, compared with other options, and Option 5 has the highest average costs.

SUMMARY AND CONCLUSLONS

This study analyzes the econome feasibility of producing Pacific oyster seed in the Pacific Northwest. Economic feasibility exists when there are positive total receipts after deducting all costs incurred in the production of oyster seed. Plant models with 5 different capacities (Plants I through V) were designed and analyzed. Two different building cost estimations were lase for each plant, based on an estimate of $\$ 25$ per square foot for a new building and $\$ 10$ equivalent per square foot for a used building. Each plant capacity has 10 different cost figures, 5 for a new building and 5 for a used building, based on options for cultch preparation. Total costs, average costs, total receiptg, nat returns, and accumulated net returns for each option and plant were analyzed, both month by month and on an annual basis. This was done to indicate how much gain or loiss occurs in each month, and the anticipated annual average costs and benefits. Variable factors affecting the cost of production were analyzed. Long-run average cost functions and the relationships between production costs and plant sizes were also analyzed.

Space requirements for Plant I to produce 6,000 cases of oyster seed per year were 5,770 square feet, while for Plant V, with a 14,000 case annual capacity, they were 8,955 square feet. Thus, a 133 percent increase in output capacity required only about a 55 percent increase in space. The main increase in apace requirements was for larval rearing and algal food product:Lon.

Total initial investment costs for building and equipment were highest in Option 2 and lowest in Option 5, among all op'ions for each plant. Total initial investment costs for each plant associated with a new building were almost double those associated with a used building, but the difference of average costs among these two types of building was about $\$ 1$ to $\$.1 .50$ per case. $0 f$ the total initial investment costs, about 51 to 78 percent was : i or buildings and 22 to 49 percent for equipment.

The proportion of fixed costs to the total for Options 1 through 4 for the 5 plant capacities fell between 60 and 76 percent in case of a new building, and 57 to 73 percent for a used building. But, in Opition 5, the proportion fell to the range of 52 to 67 percent for a new building, and 48 to 64 percent for a used building.

Labor costs, including supervision, administiation, full-time and part-time labor were the major components affecting the cosi: of production among all plants, ranging from 39 to 50 percent of the total for Options 1 through 4 for a new building, and 43 to 55 percent for a used building. But, in Option 5, these proportions varied from 30 to 43 percent and 33 to 46 percent for those plants associated with a new building and a used building, respectively.

Utilities, materials, and supplies were the rext major components affecting the cost of production, ranging from 19 to 29 percent of the total costs in Options 1 through 4 for a new building and all plant sizes; and 21 to 32 percent for a used building. But, in Option 5, these proportions varied from 31 to 43 percent and 33 to 46 percent for a new building and a used building, respectively.

Average costs varied with options, sizes of flant, and also with months of the year. During the winter months, average costs per case for Plant I were about $\$ 80$ and $\$ 72$ for each option associated with a new building and a used building, respectively. During the summer months, these costs for Plant I, for both new and used buildings, varied between $\$ 11$ and $\$ 14$, depending on options. These variations of average costs between summer and winter months narrowed with increased output capacities.

Annual average costs per case for Plant I, associated with a new building and a used building, ranged from $\$ 18.08$ to $\$ 19.91$ and $\$ 16.61$ to $\$ 18.44$, respectively, and those costs for Plant V ranged from $\$ 11.01$ to $\$ 13.12$ and from $\$ 10.03$ to $\$ 12.14$, respectively.

There is no difference in costs of cultch preparation between a new building and a used building. Average cultch preparation costs per case, for Plant I. ranged from $\$ 2.67$ to $\$ 3.38$, and for Plant V fron $\$ 2.39$ to $\$ 2.96$, In Options 1 through 4. These costs decreased with increasing plant size, mainly because of
sliding scale charges of city water and power. Cultch preparation is an important item in terms of average costs per case. The proportion of total cost allocated to cultch preparation ranged from 15 to 18 percent for Plant I and 22 to 26 percent for Plant V for Options 1 through 4 within a new building. But, in Option 5 for these plants, the proportions were about 23 and 34 percent, respectively. These proportions associated with a used building were about 2 percent higher than those of a new building in each option and plant.

There were definite economies of size with successive increased plant capacity. As the plant capacity increased from 6,000 to 14,000 cases per year, average costs per case decreased from 35 to 40 percent for all options. In other words, the size of the plant has a significant effect on the cost of production. This study also indicated that further economies of size might exist for even larger plants.

Throughout this study the Option 1 method of cultch preparation is the most favorable in terms of cost saving, compared with other options, and Option 2 is the second most favorable; Option 5 is the least favorable.

Because the initial investment costs for a new building were rather high, this study suggests considering buying or operating an existing building, if possible; thereby the owner can make about $\$ 1$ to $\$ 1.50$ nore net returns per case than if he invegted in a new building.

Finally, this study concluded that producing Pacific oyster seed in the Pacific Northwest, within the limits addressed in this study, is economically feasible.
[1] Breese, Wilbur P. and Robert E. Malouf. 1\$75. Hatchery Manual for the Pacific Oyster. Pub. No. ORESU-H-75-0C12, Oregon State University Sea Grant College Program, Corvallis.
[2] Fergugon, C. E. 1969. Microeconomic Theory, rev. ed. Richard D. Irwin, Inc., Homewood, Ill.
[3] French, B. C., L. L. Sammet, and R. G. Breesler. 1956. "Economic Efficiency in Plant Operations with Special Reference to the Marketing of California Pears." Hilgardia, Vol. 24, No. 19. University of California, Berkeley.
[4] In, Kwang H., Rlchard S. Johnston, and R. Lonald Langro. 1976. "The Economics of Hatchery Production of Pacific Oyster Seed: A Research Progress Report." Proc. Nat. Shellfish. Assoc. 66: 81-94.
[5] Im, Kwang H. and R. Donald Langtoo, 1977. "Economic Analysis of Producing Pacific Oyster Seed in Hatcheries." Accepted for publication in Proc. Nat. Shellfish. Assoc. Vol. 67.
[6] Lund, Dennis S. 1972. "Manual of Operating Procedures: Pilot Oyster Hatchery." Marine Science Center, Oregon State University, Newport, Oregon. Unpublished paper.
[7] Madden, J. Patrick. 1967. Economies of Size in Farming: Theory, Analytical Procedures, and a Review of Selected Studies. U.S. Dept. Agr ., Agr. Econ. Rpt. 107.
[8] Matthiessen, George C. 1970. A Review of Oyster Culture and the Oyster Industry in North America. Woods Hole Oceanographic Institution, Mass.
[9] Mundel, Marvin E. 1955. Motion and Time Study: Principles and Practice. 2nd ed. Prentice-Hall, Inc., N.Y.
[10] Park, William R. 1973. Cost Engineering Analysis: A Guide to the Economic Evaluation of Engineering Profects. John Wiley \& Sons, Inc.
[11] Peeler, R. J., Jr. and Richard A. King. 1963. In Plant Costs of Grading and Packing Eggs. A.E. Information Series No. 106. University of North Carolina, Raleigh.
[12] Quayle, D. B. 1969. Pacific Oyster Culture in British Columbia. Bulletin 169. Fisheries Research Board of Canada. Queen's Printer, Ottawa.
[13] Reed, Robert H. 1959. Economic Efficiency in Assembly and Processing Lima Beans for Freezing, Calif. Agr. Expt. Sta*, Giannini Foundation. Mimeo Rpt. 219.
glossary of terms as used in oyster culture
Algae (sing. alga): Single-celled microscopic marine plants that are planktonic and reproduce primarily by dividing.

Batch: The quantity produced at one cycle (from adult oyster to seed).
Bushel: 8 dry U.S. gallons or 1.245 cubic feet.
$\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$: Cobaltous chloride, hexahydrate.
Conditioning: Process whereby glycogen in adult oyster is converted to gamete.
Gultch: Materlal used to collect oyster spat, usually oyster shell.
$\mathrm{Cu} \mathrm{SO}_{4} \cdot \mathrm{SH}_{2} \mathrm{O}$: Cupric sulfate, pentahydrate.
FeCl_{3} - $6 \mathrm{H}_{2} 0$: Ferric chloride, hexahydrate.
FeEDDHA: Sodium ferric ethylenediamine di-[o-hydroxyphenyl-acetate].
FeEDTA: Sodium ferric ethylenediamine terraacetate.
Fertilization: The union of the egg and sperm.
$\mathrm{g}:$ Gram; $1 \mathrm{~g}=1,000 \mathrm{mg}=.032$ ounces.
$\mathrm{H}_{3} \mathrm{BO}_{3}$: Boric acid.
$\ell:$ Liter; $1 \ell=1,000 \mathrm{~m}=2.113$ pints.
Larvae (sing. larva): Immature free-swimming stage of oyster development following fertilization of egg, but prior to metamorphosis to adult body form.
$\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$: Manganese chloride, quadrahydrate.
$\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$: Manganous sulfate, monohydrate.
Mollusk: One of a group of soft, unsegmented animals (clam, snail, octopus).

Na 2_{2} EDTA: Disodium ethylenediamine tetraacetate.
$\mathrm{Na}_{2} \mathrm{GLY} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ - $\beta:$ Glycerophosphoric acid, disodium salt.
NaHCO_{3} : Sodium bicarbonate.
$\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$: Sodium phosphate, monobasic.
NaNO_{3} : Sodium nitrate.
$\mathrm{NaMoO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$: Sodium molybdate, bihydrate.

PVC: Polyvinyl chloride.
Rearing: Maintenance of the free-swimaing atage of the oyster.
Seed: A young oyster.
Setting: Process of the oyster larvae attashing to a substrata (cultch).
Spat: A newly settled or attached young oyiter; a postlarval oyster.
Spawning: Eliciting sex products from aduli: oyster.
Sulmet: Sulfamethazine, antibiotic.
Tris: Amino [hydroxymethyl] propandiol.
i: Micron; $1 \mu=.001$ millimeter.

Veliger: A larval mollusk in the stage when it has developed the velu.
Velum: The ciliated locomotor organ of the molluscan larvae.
$\mathrm{Zn} \mathrm{SO}_{4} \cdot 7 \mathrm{H}_{2} \mathbf{0}$: Zinc sulfate, heptahydrate.

APPENDIX

Appendix Table I - 1. Konthy and Amount Total Coste and Contr Per Cinar fur Plamt 1

Culteh preparation cethod	Option 5				
Coft of each minth by вeateon	$\begin{gathered} \text { Hinter } \\ \text { (Oct-jen) } \end{gathered}$	Late rincer (Feb)	$\begin{gathered} \text { Spring } \\ (\text { Mar-Apr }) \end{gathered}$	$\begin{gathered} 5 \text { sumer } \\ (\text { ysy-5epe) } \end{gathered}$	Ann+al total
(Yroduction (cases), new and used...........	100	400	600	800	6,000
	glare				
Variable costa, ney and used:					
	3, 24.	2, $\overline{630}$	3,559	4,449	36,990
Virfable repairg........................	1.68	2, 73	170	64	. 807
Otherp.....................................	66	136	181	22.	1×890
Iochlı....*****',	1,378	2,859	3,810	4,739	39.687
Total liked 6 variable, nev.................*	8.026	9.509	10,459	11,387	: 11.467
Fotal flmed t variable, uttd................	7.289	8,770	9.721	10,650	10,620
Tixed conte, new............................	59.11	14.78	9.85	7.39	11.83
	17.78	7.15	6.35	5.92	6.61
	50. 26	21.77	17.43	14.23	19,91
Total contalcire, uned......***	12.89	21.93	16.20	13.31	18.44

HOFL: "Rew" and "used" refer to the conta pasocelated with mev hulidina at pasociated with new bilidimp at ing at s 10 erpivalent per anuare loot, raspeceively.

Culteh prepracachine ixithod			Tpravi			cratin?				
Cost of cashement by meanem	$\begin{gathered} \text { Hinter } \\ (\text { Oct-Lan }) \end{gathered}$	Late unter (Feb)			Alnual Cots 1	Winter $(\text { act-3, } 3 \text {) }$	Late winter $(F . b)$		Sitarer $(\text { Mav-sicpt })$	Anamai tot.i]
troduction (cages), new ard usci...........	134	5.4	800	1,066	8,100	13.4	534	800	1.01,	4.000
Vartable costs, nev and unes: Part-t Ime labor.										
Patt-t ime labar.+................................ Utilficien, matertala, b suphlies........	78 1.123		466 2.389		4,659 25,444	78 1.096	311	466		
	1.123 70	$\begin{array}{r}1,900 \\ 81 \\ \hline 115\end{array}$	2.389 81	2,858 80	25,484 9.6	1,096 71	$1,992$	2, 394	2,876	25,464
Others....................................4	F. 4	115	147	178	1,552		115	147		$\begin{array}{r}1,932 \\ 1,554 \\ \hline\end{array}$
Tocal.............	1,335	2,407	3,083	3,737	32,601	1,30s	2,402	3,084	3.764	32,639
Total Total fixed ficed	8,542 7,690	9,613	10,290	10.944	119.079	8,583	9,677	10,370		
fotal fiked b variable, ustd................	7,690	8,761	9,438	10.092	108.855	7,731	88.825	10,370 9,518	10,187	119,943
Conta per case:										
Fsxed coste, new......................... Fixed costs, u9ed....................	53.78	13,50	9.01	6.76	10.81	34.29	13.62	9.09	6.93	10.91
Variable coste, new b used........	47.42 9.96	11.90	7.94	5.96	9.53	47.94	12.03	8.03	6.03	10.91
Tatal costs/cast, nev..........	9.96	4.51	3.65	3.51	4.07	9.76	4.50	3.87	3.51	4.09
Total coptelcase, ysed.........	63.74 57.39	18.01 16.41	12.86	10.27	14.88	64.05	18.12	12.96	10.36	14.99
			11,79	9.47	13.60	57.70	16.53	12.90	9.56	13.71

Culteh preparat fon zethod	Option 3					Opeton 4				
Cost of each ronth by seasan	$\begin{gathered} \text { Winter } \\ \text { (0ct-Jan) } \end{gathered}$	Late wincer (Feb)	$\begin{gathered} \text { Sprinz } \\ (\text { Martapr }) \end{gathered}$		Annus 1 total	$\begin{gathered} \text { Winter } \\ (0 \mathrm{Et}-\mathrm{Jan}) \end{gathered}$	Late vinter (Feb)	$\begin{gathered} \text { Spring } \\ \text { (4ar-Apr) } \end{gathered}$	$\begin{gathered} \text { Sturer } \\ (\text { Hay-Sept }) \end{gathered}$	imbual tetal
Production (cases), nev and used...........	134	534	600	1,066	8,000	134	534	800	1,066	3, 000
Variable costs, new and used; \quad 年										
and HLed: Part-t tre labor.....................................	78									
- veflities, materfals, t stpplico........	1,200	2,193	468 7.820	3,421	4,659 29,646	78 1,202	2,216	466 2,858	621 3,454	4,659
- Others........	70	30	89	79	908	71	83	2,85	3,454 86	$\begin{array}{r}30,004 \\ \hline 964\end{array}$
	680	129	168	205	1,761	67	131	170	208	1,782
Totsh.t****.7.t.	1,416	2.713	3,534	4,306	36,974	1,418	2.741	3,579	4,369	37,414
Toral flyed 5 variable, new,.......te**...	8,600	9.897	10,718	11,450	123,183	8,671				
	7,748	9,045	9,866	10,638	112,960	7,819	9,142	9,980	10,770	124,451 114.228
Costs per cane:										
Fixed comta, new.	53.61	13.45	8.98	6.74	10.78	54.13				
Fixed costs, used.........................	47.25	11.86	7.91	5.94	10.75 9.50	47.77	13.58	9.07 8.00	6.80 6.00	10.88 9.60
Varinble costs, new in used...............	10.57	5.08	4.42	4.04	4.62	10.58	1.13	4.47	6.00 4.10	9.60 4.68
Total costr/case, nev........... Tetal costa/cafe, ufela........	64.18	18.53	13.40	10.78	15.40	64.71	28.71	13.54	10.90	15.56
	37.82	16.94	12,3]	9.98	14.12	58.35	17.12	12.47	10.10	14.28

Gultch preparation rechod	Option 5				
cost of each awnith by aeason	$\begin{gathered} \text { Hinter } \\ (\text { Oct-Jan) } \end{gathered}$	Late minter (Feb)		sumarer $(\tan y \operatorname{sept})$	Annual tetal
Production (cases), new and esed.	134	534	800	1,066	8,000
Yariable coara, new and used: Fart-ctine labar.................................. Btilitied, bateriaio, s cuplies........ Vartable repalrs.............+.................. Others..			dollars		
	-	-			
	1,462	3,350	4,576	5,785	47,380
	68	74	71	67	822
	77	171	232	793	2,405
Total.....at....	1,607	3,595	4,881	6.145	S0,507
Total fixed 4 varinble, nev.................... Total fixed 6 variabla, uned.	8.618 7.767	10,607	11,893	13.156	$\cdots 34,646$
Total fixed 6 varidhla, uned...............	7,767	9.755	11,041	12,304	:24,423
Costa pre crae:					
Fined costs, new............................	52.33	13.13	6.76	6.58	20.52
Varinble costa, new i . ume......................	45.97 11.99	11.53	7.70	5. 78	9.34
Verinble coste, new inmed.e...........*	11.99	6.73	6.10	5.76	6.38
Total conth/cane, mer.........., Tothl conta/cast, unti.......,	64.32 57.94	19.76 18.26	14.86	11. 4	16.8)
		1 H. 26	17.9n	11.54	15.35

Hort: "New and "ured" tofor to the coste
olitoctated with a nev buliding at
\$25 per efunce foot, and muced buildfink at \$tbequivaliat per niluare fort, reapectively.

Culteh preparation method	Option 5				
Cost of esch manth by scason	$\begin{gathered} \text { Wlnter } \\ (0 \text { ot-Jan }) \end{gathered}$	Lute winter (rab)		$\begin{gathered} \text { Surner } \\ (\text { May-Sept }) \end{gathered}$	Annisal $t c+a]$
Product lon (cases) , ncu and uned..........	165	6.6	1,700	1,334	10,000
	-----	---*-	doplyats		
Yarlable conte, new and wedt					
Part-t the labor.................................. ptilities, miteriald, \& auphliey.......	1,670	4,041	5,596	7,2.32	57,514
putitcies, raterialo, \& Aupritey........ Varlable repaita.............................	$\begin{array}{r}1.670 \\ \hline 69\end{array}$	-15	+ 73	\% 69	883
©there.	A7	206	20.13	360	2,921
	1.826	4,322	5.952	7,561	61,314
Total fixtd \& vapyable, new.t...............	9,1.23	11,618	13.249	14,857	143,892
Tolal lixed 4 vetinble*, vecd.....t..........	8,140	10,675	12.306	13,915	137,582
Conts per canc:	43.95	10.96	7.30	4.47	A,76
Flined contn, new................................ Fixed contr, uncid...........................	$3 \mathrm{4} .2 \mathrm{2H}$	9.54	6.35	4. 76	3.63
Yarlable ropto, now 5 uned...............	11.00	6.49	5.95	5.67	6.13
Toral contricrat, sew.........	54.75	17.45	13.75	11.14	14.89
fotal costa/cant, wirclat......	$44^{4} .76$	16.03	12.74	14.43	11.36

NOTE: ${ }^{H} \mathrm{New}^{\mathrm{H}}$ and "Mmed" refer to tho engtit egaciates with new Lallillfy it \$73 per miluefe fant, int a uyct liollis Inf et $\$ 10$ *quivalent juer ajuare lomb, reapectively.

Cuitch prepatation method	Option 5				
Cest of each month by meacon	$\begin{aligned} & \text { Whater } \\ & \text { (Oct-Jan) } \end{aligned}$	Lato Hinter (Feb)	$\begin{gathered} \text { Spring } \\ (\text { Har-Apr }) \end{gathered}$	$\begin{gathered} \text { 5unver } \\ \text { (Hay-Scet) } \end{gathered}$	Annual total
Production (faret), new and used............	200	800	1,200	1,600	12,000
			Llars		
Variable comt. 7.4% and uned: Fart-tint labor................................... Utilitien, materinif, b Eupplien........ Vmisoble repsits...t.............................. 	\cdots	-	-	998	4,992
	1,909	4,762	6,627	0,4]2	68,012
	76	81	78	, 71	8 gag
	99	24.2	115	47	3,695
Totsl.............	2,084	5,087	7,040	10,018	77,595
Total fired 4 varlable, new-................	9,684	12,687	14,640	17.848	168, 798
frotal fixed 6 varimble, used.................	8.643	11,646	13,594	16,577	156,305
Conte per cape;					
	38.00	9.50	6.33	4.75	7.60
Fixed costn, nned.........................	32.80	8. 20	5.47	4.10	6.56
Varlable coste. dev t uned...............	10.42	6.36	3.87	6.76	6.47
Total contn/cner., new..........	48.42	15.86	$12,20$	11.01	14.07
	43.22	14.56	11.4	10.20	13.03

MOTE: "New" and "u\&ed" lefer to the conte anocisted with nev bulding et

 reapectively.

Culteh prepuration arthoal	$\mathrm{o}_{\mathrm{pt}} \mathrm{i}$ inn 1					Oplton 2				
Coat of ench manch by acosion	Vinter $(0, c-3+1)$	hate winter (5en)	$\begin{gathered} \text { Springe } \\ (\text { (Har-Apry }) \end{gathered}$		Apminal tut:3	$\begin{gathered} \text { WLater } \\ \text { (Oct-Jan) } \end{gathered}$	Lata winter (4.cb)		$\begin{gathered} \text { Sutret } \\ (\text { Sncoivic }) \end{gathered}$	$\begin{aligned} & \text { Antual } \\ & \text { t: } \because \mathrm{tal} 1 \end{aligned}$
Production (camen), nev and used...........	235	934	1.400	1,946	14,900	234	434	1,400	1,*66	14.anm
Variable caste, noy and used: Part-tiac labor. \qquad Uriliciea, matertals, s aupplies........ Variable repaira................................. 0thertion'r.. Tota1...............			11,175	--				tollarie		
		544	015	2.095	13.146	136	544	815	2,085	13.145
	1,511	2,001	3,790	4,661	39.926	1,4as	2,912	3. 824	4.717	40, HN_{1}
	179	96	98	97	1.093	${ }^{1}$	102	107 217	110 346	1,181 2.729
	H6	177	235	-342	2,703	A5				
	1,912	3.718	4,934	7,195	56,768	1.790	3.736	4,983	3,258	57,153
Total fired $\frac{1}{}$ variableg new.	1,936	11,542	13,063	15.310	154.263	9,964	11,930	13,177	15,451 14,307	155.676 141.745
Total fixed i varinble, wed.	8.792	10,698	11.919	14,166	140,533	0,840	10,786	12,033	14,307	141,746
Conte per cage:							8.17	5.85	4.39	7,02
Fixed cotte, neu...........................	34.72 29.83	8.70	5.80 4.99	4.35 3.74	6.96 5.98	35,02 30.19	3.71 7.55	5.04	3.78	6.02
Thxed tostar used.........................	29.85 7.74	3.96	3.53	3.85	4.05	7.65	4.00	3.56	3.69	4.08
Total toctu/case, new	\$2.46	12.68	9.33	5.20	11.01	42.67	12.77	9.41	9.28	11.10
Total contr/case, wied. .*.	37.37	11.45	8.52	7.59	10.03	37.78	11.35	\$.60	7.67	10.12

Cultch prepaxatioo method	Option 3					Option 4				
Cost of each month by ceacod	Hinter (Oct-J.ja)	Late vinter (Fe3)	$\begin{gathered} \text { 5pring } \\ (\mathrm{MAr-Apr}) \end{gathered}$	$\begin{gathered} \text { Sumer } \\ (\text { Sav-Sepr }) \end{gathered}$	Ancual tota1	$\begin{gathered} \text { Winter } \\ (0 c t-\sqrt{2}) \end{gathered}$	late uinter (Feb)	$\begin{gathered} \text { Sp:1ps } \\ \text { (Tar-Apr) } \end{gathered}$	$\begin{gathered} 5=2 \mathrm{=} \\ (4,+5: p \mathrm{c}) \end{gathered}$	$\begin{aligned} & \text { Anver } \\ & \text { tatal } \end{aligned}$
Production (cases), ney and ustd.	234	934	1,400	1, 266	14,000	234	934	1,400	1,960	14,000
-										
Yerteple coate, new and uned:						136	\$44	815	2,035	13.166
Part-tife labor..........................	196 1.648	3,401	4,438.	5,45!	13,146	1,654	3,446	4,508	5,547	46,913
	1.6989	3, 94	-94	59	1,061	80	100	104	106	1,45
Dtherm...ect............................	93	202	267	382	3,016	94	205	271	387	3.385
Total.............	1,956	4,241	5,614	8.011	63,345	1,964	4,295	5,698	8,125	64,124
Potal fixed if variable, nev.................	10,053	12,343	13,716	16.113	160,571	10,135	12,466	13,870	16.296	167, 27
Total flxed t varitbie, used.................	8,914	11.199	12,572	14,969	146.842	8,991	11,322	12,723	15,152	148* ${ }^{\text {a }}$,
Contsper case:			5.79	4.34	6.94	14.92	8.75	5.84	4.38	3.00
7ixed costs, nev...............................	29.62	7.45	4.97	3.73	5.96	30.03	7.52	5.02	3.77	6.02
Yaxtmble costs, neu i used...............	8. 36	4.54	4.01	4.29	4.53	8.39	4.60	4.07	4. 35	4.58
Total costefctyt, neur.........	47.98	13.21	5.80	8.63	11.47	63.31 38.62	13.35 12.12	9.91 9.09	8.73 3.12	11.59
Total costsfase, used........	38.10	11.99	8.58	8.02	10.49	38.42	12.12	9.09	3.12	10.60

Culteh preparation rethod	Option 5				
Coat of each monch by teabion	$\begin{gathered} \text { Whecr } \\ \text { (Oct-Jan) } \end{gathered}$	bate winter (5eb)		$\begin{gathered} \text { Surwer } \\ \text { (uy-Sept) } \end{gathered}$	Atmual totsi
Product ion (caecp). nev and uned...........	234	93.	1,400	1, 26.6	14,000
Wirimble conts, new ond used: 					
Veilitlet, materiais,	2,127	5,461	7,645	9,809	78, 301
Varimble repate..........................	. 76	34	79	73	912 4.210
otbert...........	110	377	386	544	4, 210
Total............	2,313	3,827	8.110	11,424	88,415
Total flxed 4 vardable, nev................	10,7429,098	13.75212.608	$\begin{aligned} & 16,040 \\ & 14,596 \end{aligned}$	19,354	$\begin{aligned} & 183.571 \\ & 169.942 \end{aligned}$
Total fixed it variable, vied....t..........				18,210	
Conts per eabe: †lxed conti, new \qquad pixed conta, yned. \qquad Varlable cost ${ }^{\text {, }}$ nau b uped...+...........	33.39	8.49	5.66	4.25	6.AD
	29.009.78	$\begin{aligned} & 7.26 \\ & 6.23 \end{aligned}$	4.85	$\because \cdot 64$	5.82
			5.79	6.12	
	43.71	$\begin{aligned} & 14.72 \\ & 13,49 \end{aligned}$	$\begin{aligned} & 11.45 \\ & 214.14 \end{aligned}$	$\begin{gathered} 10,77 \\ 4,76 \end{gathered}$	$\begin{aligned} & 13.12 \\ & 17.14 \end{aligned}$
	30.0.8				

Wort: "Nru" and "uned" tefer to the conte Haciated wifh a nev trilldinz at $\$ 25$ per mipurt foct, ant a usiod buside fne ft $\$ 10$ mifualeot fet fquare 100 t . reppectivily.

[^0]: af The equipment listed in this heading is for a plant which pumps salt water with own generated power, for cultch preparation.

[^1]: a) "New" and "used" refer to the costs associated with a new building at $\$ 25$ per square foot, and a used building at $\$ 10$ equivalent per square foot, respectively.

[^2]: a/ Numbers in parentheses indicate the required units.

